

Raspberry Pi CM0

数据手册

by EDA Technology Co., Ltd built: 2025-09-22

Raspberry Pi Compute Module 0

文档说明

Raspberry Pi Compute Module 0是Raspberry Pi官方产品,产品的品牌属于Raspberry Pi ,产品的IP属于Raspberry Pi。

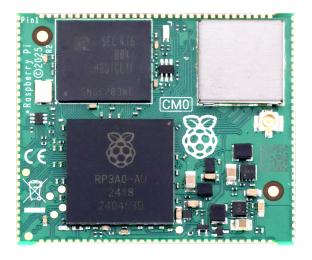
本文档由上海晶珩电子科技有限公司翻译。由于翻译水平有限,可能会存在翻译不准确的地方。如果发现翻译后的内容不完整或者不准确,请及时联系(可发送邮件至support@edatec.cn)。

最终解释权及最准确的文档版本,请以Raspberry Pi官方发布的内容为准。

1 简介

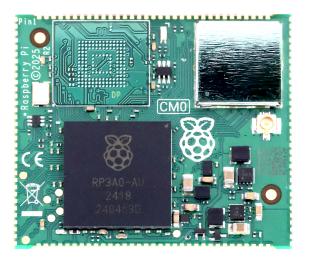
介绍Raspberry Pi Compute Module 0 (简称Raspberry Pi CM0)的定义和特性。

1.1 概述


Raspberry Pi CM0是一款系统级模块(System on Module, SoM),集成处理器、内存、eMMC闪存及配套电源电路。开发者可借此模块在定制化系统中复用Raspberry Pi硬件架构与软件生态,并突破标准开发板的物理形态限制。除此之外,Raspberry Pi CM0还提供Raspberry Pi标准版的额外I/O接口,为硬件方案创造更多的可能性。

Raspberry Pi CM0作为全新核心模块,瞄准现有市场的入门级领域,通过低成本与高性能组合策略实现突破。针对成本敏感型应用场景,可提供去除eMMC闪存的精简版本,该版本命名为Raspberry Pi CM0 Lite)。

提示


除非另有说明,本文档中Raspberry Pi CMO的表述同时涵盖Raspberry Pi CMO Lite。

Raspberry Pi CM0

• Raspberry Pi CM0 Lite

1.2 特性

Raspberry Pi CM0的主要特性如下:

- 1GHz 四核 64位 Arm Cortex-A53 处理器
- 512MB SDRAM
- 紧凑型封装: 39mm × 33mm × 2.8mm模块
- ·邮票孔封装,孔中心距1mm,132引脚布局
- eMMC闪存可选配置方案: 0GB(Raspberry Pi CM0 Lite)、8GB或16GB
- H.264/MPEG-4视频解码(1080p@30帧/秒); H.264编码(1080p@30帧/秒)
- OpenGL ES 1.1/2.0 图形处理标准
- 2.4GHz频段 802.11 b/g/n 无线局域网(Wireless LAN)
- 蓝牙4.2标准,支持低功耗模式(Bluetooth Low Energy, BLE)
- IPEX-1型外接天线插座
- 1 x USB 2.0高速接口
- 28路GPIO(通用输入/输出接口),支持1.8V/3.3V双电压信号电平,可配置为以下外设接口:
 - 1 x UART
 - ∘ 1 x SPI
 - ∘ 2 x I2C
 - 1 x SDIO
 - 1 x PCM

- •视频输出:
 - 。1 x HDMI 端口,支持1080p30Hz
 - 。1 x TVDAC端口
- MIPI DSI:
 - ∘1 x 4通道MIPI DSI显示端口
- MIPI CSI:
 - ∘1 x 4通道 MIPI CSI 相机接口
- 单路+5V电源输入
- 板载绿色LED状态指示灯

2接口

介绍Raspberry Pi Compute Module 0 (简称Raspberry Pi CM0)包含的所有接口。

2.1 无线

Raspberry Pi CM0模块可搭载板载无线通信模组,该模组提供外置IPEX-1型天线接口。当启用无线功能时,必须安装外置天线。

- 2.4 GHz频段 IEEE 802.11 b/g/n 无线局域网
- 蓝牙4.2标准(支持BLE低功耗模式)

上述无线接口可根据需求独立启用或禁用。

2.1.1 WL ON

该引脚可用于使能或禁用Wi-Fi功能。

2.1.2 BT ON

该引脚可用于使能或禁用蓝牙功能。

提示

在不带Wi-Fi功能的Raspberry Pi CMO模块上,这些引脚作为预留。

2.2 USB 2.0

Raspberry Pi CMO模块仅支持单个USB 2.0端口,该接口可配置为以下两种工作模式之一:

- ·OTG功能启用时对CMO进行程序烧录;
- 通过USB HUB扩展此端口以实现更多功能;

2.2.1 USB OTG模式

USB OTG ID 控制引脚(3.3V信号电平):内置上拉电阻。接地时Raspberry Pi CM0/Raspberry Pi CM0 Lite将切换为USB主机角色,但需配合匹配的操作系统驱动使用。

2.3 GPIO

Raspberry Pi CM0模块提供28路通用输入/输出(GPIO)引脚,这些引脚可通过功能复用连接以下内部外设接口:

- ·I²C(双线串行总线)
- PCM (脉冲编码调制接口)
- ·SPI(串行外设接口)
- UART (通用异步收发器)
- SDIO接口

2.3.1 GPIO Bank 0

GPIO0-GPIO27被定义为GPIO Bank 0(第0组GPIO),连接至外部接口扩展的连接器。该组GPIO的供电电源由外部GPIO VREF引脚输入,可根据客户需求选择3.3V或1.8V工作电压。

提示

所有GPIO引脚必须统一遵循GPIO_VREF引脚设定的电压电平,严禁混合使用不同电压电平。

GPIO第0组复用功能分配方案如下表:

GPIO	Pull	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
GPIO0	High	SDA0	SA5	reserved			
GPIO1	High	SCL0	SA4	reserved			
GPIO2	High	SDA1	SA3	reserved			
GPIO3	High	SCL1	SA2	reserved			
GPIO4	High	GPCLK0	SA1	reserved			ARM_TDI
GPIO5	High	GPCLK1	SA0	reserved			ARM_TDO
GPIO6	High	GPCLK2	SOE_N/SE	reserved			ARM_RTCK
GPIO7	High	SPI0_CE1_N	SWE_N/ SRW_N	reserved			
GPIO8	High	SPI0_CE0_N	SD0	reserved			
GPIO9	Low	SPI0_MISO	SD1	reserved			
GPIO10	Low	SPI0_MOSI	SD2	reserved			
GPIO11	Low	SPI0_SCLK	SD3	reserved			
GPIO12	Low	PWM0	SD4	reserved			ARM_TMS
GPIO13	Low	PWM1	SD5	reserved			ARM_TCK

Email: sales@edatec.cn / support@edatec.cn

Web: www.edatec.cn

GPIO	Pull	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
GPIO14	Low	TXD0	SD6	reserved			TXD1
GPIO15	Low	RXD0	SD7	reserved			RXD1
GPIO16	Low	reserved	SD8	reserved	CTS0	SPI1_CE2_N	CTS1
GPIO17	Low	reserved	SD9	reserved	RTS0	SPI1_CE1_N	RTS1
GPIO18	Low	PCM_CLK	SD10	reserved	BSCSL SDA/ MOSI	SPI1_CE0_N	PWM0
GPIO19	Low	PCM_FS	SD11	reserved	BSCSL SCL / SCLK	SPI1_MISO	PWM1
GPIO20	Low	PCM_DIN	SD12	reserved	BSCSL/MISO	SPI1_MOSI	GPCLK0
GPIO21	Low	PCM_DOUT	SD13	reserved	BSCSL/ CE_N	SPI1_SCLK	GPCLK1
GPIO22	Low	reserved	SD14	reserved	SD1_CLK	ARM_TRST	
GPIO23	Low	reserved	SD15	reserved	SD1_CMD	ARM_RTCK	
GPIO24	Low	reserved	SD16	reserved	SD1_DAT0	ARM_TDO	
GPIO25	Low	reserved	SD17	reserved	SD1_DAT1	ARM_TCK	
GPIO26	Low	reserved	reserved	reserved	SD1_DAT2	ARM_TDI	
GPIO27	Low	reserved	reserved	reserved	SD1_DAT3	ARM_TMS	

2.3.2 GPIO Bank 1

GPIO28-GPIO45被定义为GPIO第1组(Bank 1),仅限核心模块内部使用。该组采用固定3.3V电压域(不可配置)。

提示

GPIO41与GPIO42并未直连Wi-Fi模块,而是引出至邮票孔连接器。WL_ON(无线使能)和BT_ON(蓝牙使能)信号同样连接至邮票孔接口。用户可自主选择通过GPIO控制或独立电路实现Wi-Fi/蓝牙的启停管理。

GPIO第1组复用功能分配方案如下表:

GPIO	Pull	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
GPIO28	-	SDA0	SA5	PCM_CLK	reserved		
GPIO29	-	SCL0	SA4	PCM_FS	reserved		
GPIO30	Low	reserved	SA3	PCM_DIN	CTS0		CTS1

Email: sales@edatec.cn / support@edatec.cn

Web: www.edatec.cn

GPIO	Pull	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
GPIO31	Low	reserved	SA2	PCM_DOUT	RTS0		RTS1
GPIO32	Low	GPCLK0	SA1	reserved	TXD0		TXD1
GPIO33	Low	reserved	SA0	reserved	RXD0		RXD1
GPIO34	High	GPCLK0	SOE_N/SE	reserved	reserved		
GPIO35	High	SPI0_CE1_N	SWE_N/ SRW_N		reserved		
GPIO36	High	SPI0_CE0_N	SD0	TXD0	reserved		
GPIO37	Low	SPI0_MISO	SD1	RXD0	reserved		
GPIO38	Low	SPI0_MOSI	SD2	RTS0	reserved		
GPIO39	Low	SPI0_SCLK	SD3	CTS0	reserved		
GPIO40	Low	PWM0	SD4		reserved		TXD1
GPIO41	Low	PWM1	SD5	reserved	reserved	SPI2_MOSI	RXD1
GPIO42	Low	GPCLK1	SD6	reserved	reserved	SPI2_SCLK	RTS1
GPIO43	Low	GPCLK2	SD7	reserved	reserved	SPI2_CE0_N	CTS1
GPIO44	-	GPCLK1	SDA0	SDA1	reserved	SPI0_CE1_N	
GPIO45	-	PWM1	SCL0	SCL1	reserved	SPI0_CE2_N	

2.3.3 GPIO Bank 2

GPIO46-GPIO53被定义为GPIO第2组(Bank 2),其电压不可用户配置,需通过内部零欧姆电阻跳线选择固定3.3V或1.8V工作电压。

GPIO第2组复用功能分配方案如下表:

GPIO	Pull	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5
GPIO46	High	Internal					
GPIO47	High	Internal					
GPIO48	High	Internal					
GPIO49	High	Internal					
GPIO50	High	Internal					
GPIO51	High	Internal					
GPIO52	High	Internal					
GPIO53	High	Internal					

2.4 HDMI

BCM283x系列芯片支持HDMI V1.3a标准(高清多媒体接口1.3a版)。

强烈建议用户参照计算模块IO板的HDMI电路设计规范:

- HDMI差分时钟对(CK_P/N)与数据通道(D0-D2_P/N)必须按100Ω阻抗的等长差分走线布线。
- 确保每对差分信号严格相位同步(正负信号边沿对齐偏差≤5ps)。
- HDMI走线需远离噪声源(如开关电源/高速时钟),并尽量缩短路径长度。

未严格遵守上述设计规则将导致电磁兼容性(EMC)测试失败,产品无法通过认证上市。

2.5 DSI (MIPI显示)

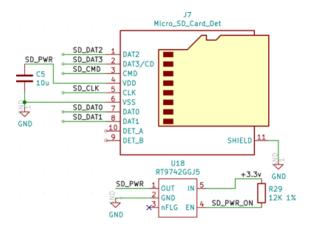
目前,DSI接口的文档未完全公开,只有经过Raspberry Pi官方固件支持的DSI显示屏才能与此接口兼容。此外,显示屏也可以通过并行DPI接口接入,该功能可通过GPIO的复用功能实现。

2.6 CSI (MIPI摄像头)

目前,CSI接口的文档未完全公开,仅支持Raspberry Pi官方固件兼容的CSI摄像头传感器(如 OmniVision OV5647及Sony IMX219)。建议其他摄像头通过USB接口连接。

2.7 状态指示灯

为便于现场返修单元调试与故障分析,模块板上设有"状态指示灯"(ACTIVE LED),用于指示处理器是否完成启动并开始运行。


该LED同时连接至接口连接器,具备双重功能:

- 常规GPIO模式: 定义为标准LVCMOS33电平GPIO时, 其功能与其他GPIO引脚相同;...
- 外接状态指示灯:由于ACTIVE信号由SOC的GPIO29控制,为确保驱动强度满足要求,建议客户对该信号进行缓冲后再驱动LED。

2.8 SDIO/eMMC (仅Raspberry Pi CM0 Lite)

Raspberry Pi CM0 Lite开发板未集成板载eMMC存储器,但通过连接器引出了eMMC信号接口,可外接eMMC模块或SD卡使用。

SD_PWR_ON信号用于控制外部电源开关,为SD卡提供供电;该信号在eMMC存储方案中通常无需使用。若需从SD卡启动系统,则必须额外配置上拉电阻,使电源开关默认保持开启状态。当SD_VDD_OVERRIDE信号置高(3.3V电平)时,将强制SDIO接口采用1.8V信号传输,此模式通常用于eMMC存储器场景。

2.9 Global EN

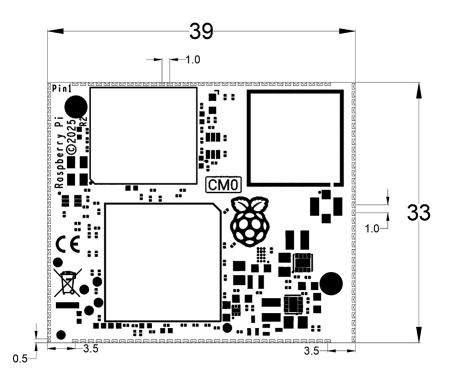
将此处引脚拉低可使CM0进入最低功耗关断状态。完成软件关机后,需将Global_EN信号拉低超过 1ms以重启CM0的电源系统。

2.10. RUN PG

该引脚处于高电平时表示 CM0 模块已启动。驱动该引脚至低电平将强制复位模块,但需谨慎操作:若文件系统中存在未关闭的文件,将导致数据异常。

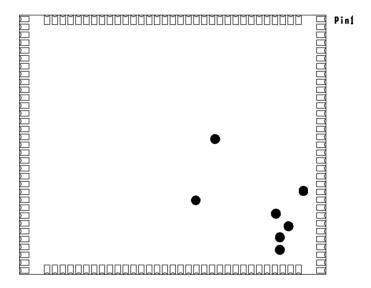
2.11. nRPI_BOOT

在启动过程中,若该引脚保持低电平,系统将立即中止从eMMC启动,并转由USB接口执行rpi boot。

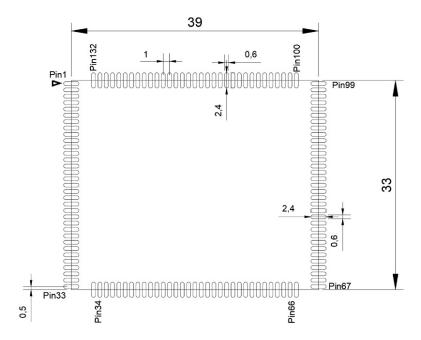

3 机械尺寸

Raspberry Pi Compute Module 0 (简称Raspberry Pi CM0)是一款紧凑型模组,尺寸为39 mm×33 mm,厚度仅2.8 mm,支持LCC邮票孔封装(孔间距1mm,共132个针脚)。

3.1 2D图纸


• 顶部视图

单位:mm


• 底部视图

单位:mm

3.2 推荐的封装设计

单位:mm

请从以下路径下载封装设计源文件:CM0/CM0 Lite底板推荐封装 (https://vip.123pan.cn/1826505135/28836762)。

4引脚

Raspberry Pi Compute Module 0 (简称Raspberry Pi CM0)包含132个引脚,具体的引脚定义如下表。

引脚	信号	描述
1	GND	接地 (0 V)
2	DSI_D3_P	输出显示通道D3正极
3	DSI_D3_N	输出显示通道D3负极
4	GND	接地 (0 V)
5	DSI_D2_P	输出显示通道D2正极
6	DSI_D2_N	输出显示通道D2负极
7	GND	接地(0V)
8	DSI_CP	输出显示时钟正极
9	DSI_CN	输出显示时钟负极
10	GND	接地 (0 V)
11	DSI_D1_P	输出显示通道D1正极
12	DSI_D1_N	输出显示通道D1负极
13	GND	接地(0V)

引脚	信号	描述
14	DSI_D0_P	输出显示通道D0正极
15	DSI_D0_N	输出显示通道D0负极
16	GND	接地 (0V)
17	HDMI_HPD	输入HDMI热插拔检测
18	HDMI_SDA	双向 HDMI 配置数据线 (SDA)
19	HDMI_SCL	双向 HDMI 配置时钟线 (SCL)
20	HDMI_CEC	输入 HDMI CEC 数据线(已通过 CM0 电平转换至 3.3V LVCMOS)
21	GND	接地 (0 V)
22	HDMI_CLK_N	输出 HDMI 时钟负极
23	HDMI_CLK_P	输出 HDMI 时钟正极
24	GND	接地 (0 V)
25	HDMI_TX0_N	输出 HDMI TX0 负极
26	HDMI_TX0_P	输出 HDMI TX0 正极
27	GND	接地(0V)
28	HDMI_TX1_N	输出 HDMI TX1 负极
29	HDMI_TX1_P	输出 HDMI TX1 正极
30	GND	接地(0V)
31	HDMI_TX2_N	输出 HDMI TX2 负极
32	HDMI_TX2_P	输出 HDMI TX2 正极
33	GND	接地(0V)
34	GND	接地(0V)
35	USB_DM	USB D-
36	USB_DP	USB D+
37	GND	接地 (0V)
38	OTG_ID	USB OTG 模式选择引脚(输入 3.3V 信号,内部上拉):当此引脚接地时,CM0/CM0 Lite将切换为USB主机模式,但必须配合正确的操作系统驱动程序方可生效
39	TV_OUT	复合视频 DAC 输出端
40	GND	接地(0V)

引脚	信号	描述
41	3V3_CAM	摄像头专用 3.3V 供电
42	SDA0	I2C0 总线数据信号线(CM0 模块内置 2.2KΩ 上拉电阻至 3.3V)
43	SCL0	I2C0 总线时钟信号线(CM0 模块内置 2.2KΩ 上拉电阻至 3.3V)
44	CAM_GPIO	此引脚通常用于强制关闭摄像头以实现节能(不推荐重新配置为其他功能),采用 CM0_3.3V 电平标准。
45	GND	接地 (0 V)
46	CAM_D3_P	摄像头输入D3正极
47	CAM_ D3_N	摄像头输入D3负极
48	GND	接地 (0 V)
49	CAM_D2_P	摄像头输入D2正极
50	CAM_D2_N	摄像头输入D2负极
51	GND	接地 (0 V)
52	CAM_CP	摄像头输入时钟正极
53	CAM_CN	摄像头输入时钟负极
54	GND	接地(0V)
55	CAM_D1_P	摄像头输入D1正极
56	CAM_ D1_N	摄像头输入D1负极
57	GND	接地(0V)
58	CAM_D0_P	摄像头输入D0正极
59	CAM_ D0_N	摄像头输入D0负极
60	GND	接地 (0 V)
61	RUN_PG	双向功能引脚,拉低时可强制复位 CM0 CPU;作为输出时,高电平表示电源稳定且 CPU 正常运行。
62	GLOBAL_EN	输入引脚:拉低可强制关闭 CM0 电源(内部经 100kΩ 电阻上拉至 +5V)
63	GND	接地 (0 V)
64	1V8	1.8V 输出电压
65	1V8	1.8V 输出电压
66	GND	接地 (0 V)
67	5V	5V 输入电源 (工作电压范围需 >5.4V)

引脚	信号	描述
68	5V	5V 输入电源(工作电压范围需 >5.4V)
69	GND	接地 (0 V)
70	NC	未连接
71	NC	未连接
72	GND	接地(0V)
73	GPIO21	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
74	GPIO20	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
75	GND	接地 (0 V)
76	GPIO26	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
77	GPIO16	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
78	GND	接地(0V)
79	GPIO19	GPIO接口: 默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至CM0_1.8V 电源,可切换为 1.8V 信号模式
80	GPIO13	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
81	GND	接地 (0 V)
82	GPIO12	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
83	GPIO16	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
84	GND	接地(0V)
85	GPIO5	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
86	ID_SC	内部 I2C 总线时钟信号(SCL):当存在 eMMC 时,CM0 通过 2.2KΩ 电阻上拉至 1.8V;若未安装 eMMC,则上拉至 3.3V
87	GND	接地(0V)
88	ID_SD	内部 I2C 总线数据信号(SDA):当 eMMC 存在时,CM0 通过 2.2KΩ 电阻上拉至 1.8V;若未安装 eMMC,则上拉至 3.3V

引脚	信号	描述
89	GPI07	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
90	GND	接地 (0 V)
91	GPIO8	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
92	GPIO11	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
93	GND	接地 (0 V)
94	GPIO25	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
95	GPIO9	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
96	GND	接地 (0 V)
97	GPIO10	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
98	GPIO24	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
99	GND	接地 (0 V)
100	GND	接地 (0 V)
101	GPIO23	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
102	GPIO22	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
103	GND	接地 (0 V)
104	GPIO27	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
105	GPIO18	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
106	GND	接地 (0 V)
107	GPIO17	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
108	GPIO15	

引脚	信号	描述
		GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
109	GND	接地 (0 V)
110	GPIO14	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
111	GPIO4	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
112	GND	接地(0V)
113	GPIO3	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
114	GPIO2	GPIO接口:默认支持 3.3V 信号电平,但通过将 GPIO_VREF 引脚连接至 CM0_1.8V 电源,可切换为 1.8V 信号模式
115	GND	接地(0V)
116	WL_ON	Wi-Fi 使能输出信号
117	BT_ON	蓝牙使能输出信号
118	STATUS_LED	CM0 状态指示灯(可配置为 GPIO29 复用功能)
119	3V3	3.3V 输出电压
120	VREF_GPIO	GPIO2~27 参考电源(可配置为 1.8V 或 3.3V)
121	RPI_BOOT_L	上电期间保持此引脚为低电平,将强制处理器以 USB OTG 模式启动
122	SD_VREF	SDIO 接口参考电源(可配置为 1.8V 或 3.3V)
123	GND	接地 (0 V)
124	SD_DAT1	SD卡/eMMC Data1 信号(仅 CM0 Lite 模块支持此信号)
125	SD_DAT0	SD卡/eMMC Data0 信号(仅 CM0 Lite 模块支持此信号)
126	GND	接地 (0 V)
127	SD_CLK	SD卡时钟信号(仅CM0 Lite模块支持此信号)
128	SD_CMD	SD卡/eMMC 命令信号(CMD)(仅 CM0 Lite 模块支持此信号)
129	GND	接地 (0 V)
130	SD_DAT3	SD卡/eMMC Data3 信号(仅 CM0 Lite 模块支持此信号)
131	SD_DAT2	SD卡/eMMC Data2 信号(仅 CM0 Lite 模块支持此信号)
132	GND	接地(0V)

5 订购编码

型 号	无线	RAM LPDDR2	eMMC存储		
			000 = 0GB (Lite)		
	0 = No	00 = 512MB	008 = 8GB		
CM0			016 = 16GB		
Civio	1 = Yes	00 = 512MB	000 = 0GB (Lite)		
			008 = 8GB		
			016 = 16GB		
示例型号					
CM0	1	00	016		

提示

本文提供的订购代码仅供参考,最终有效订购代码以Raspberry Pi官方发布为准。

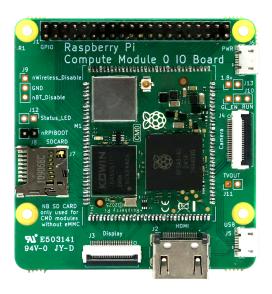
Raspberry Pi Compute Module 0 Development Board

文档说明

Raspberry Pi Compute Module 0 Development Board是Raspberry Pi官方产品,产品的品牌属于Raspberry Pi。

本文档由上海晶珩电子科技有限公司翻译。由于翻译水平有限,可能会存在翻译不准确的地方。如果发现翻译后的内容不完整或者不准确,请及时联系(可发送邮件至support@edatec.cn)。

最终解释权及最准确的文档版本,请以Raspberry Pi官方发布的内容为准。


1 简介

介绍Raspberry Pi Compute Module 0 Development Board (简称CM0 Dev Board) 的定义和特性。

1.1 概述

CM0 Dev Board专为低成本嵌入式原型设计打造,提供完整的CM0开发平台。该开发板包含1个Raspberry Pi CM0(简称CM0)、1个Raspberry Pi CM0 IO板(简称CM0IO板)和1个FPC天线。

- Raspberry Pi CM0 (512MB SDRAM, 8GB eMMC, Wi-Fi/BT)
- Raspberry Pi CM0 IO板
- FPC天线 (3.5 dBi)

提示

CMO默认已安装至CMOIO板上,且下文中的CMOIO板均包含CMO。

1.2 特性

CM0 Dev Board的主要特性如下:

- 1GHz 四核 64位 Arm Cortex-A53 处理器
- 512MB SDRAM, 8GB eMMC
- H.264/MPEG-4视频解码(1080p@30帧/秒); H.264编码(1080p@30帧/秒)
- OpenGL ES 1.1/2.0 图形处理标准
- 2.4GHz频段 802.11 b/g/n 无线局域网(Wireless LAN)
- 蓝牙4.2标准,支持低功耗模式(Bluetooth Low Energy, BLE)
- •1 x FPC天线,支持通过IPEX插座接入至CM0
- 1 x HDMI 端口,支持1080p30Hz
- 1 x Micro USB 端口(J5), USB 2.0接口
- •1 x Micro USB 端口(J6), 电源输入接口
- 1 x MIPI DSI显示端口
- 1 x MIPI CSI相机接口
- •1 x 标准的Raspberry Pi 40-Pin插针
- 1 x 2-Pin nRPIBOOT插针
- 低功耗设计,
- 预留LED、TVOUT、nBT Disable和nWireless Disable等引脚
- 硬件设计开源

2 CM0IO规格

介绍CMOIO板包含的所有接口、外观尺寸和原理图。

2.1 CM0IO板接口

介绍CM0IO板包含的所有接口。

2.1.1 HDMI

CM0IO板包含1个标准的Type-A HDMI接口,兼容HDMI 1.3a标准,分辨率支持1080p 30Hz,支持连接HDMI显示器。

2.1.2 DSI (MIPI显示)

CM0IO板包含1个MIPI DSI接口,22-Pin 0.5mm间距的FPC连接器,支持通过22-Pin的FPC线连接Raspberry Pi Display。

提示

在连接Raspberry Pi Display后需要进行相关的配置才可以正常使用。

2.1.3 CSI (MIPI摄像头)

CM0IO板包含1个MIPI CSI接口, 22-Pin 0.5mm间距的FPC连接器, 支持通过22-Pin的FPC线连接 Raspberry Pi Camera。

提示

在连接Raspberry Pi Camera后需要进行相关的配置才可以正常使用。

2.1.4 Micro-USB(数据)

CM0IO板包含1个Micro-USB(数据)接口,在板上的位置为J5,兼容USB 2.0标准,支持连接标准的USB 2.0外设,最大支持480Mbps的传输速率。

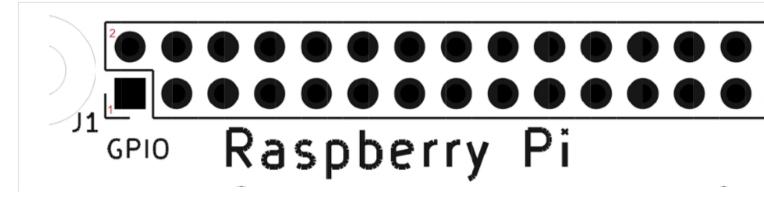
断开CM0IO板的电源,短接nRPIBOOT(J8)的2-Pin插针,再通过此接口连接PC,则CM0将进入烧录模式,对eMMC进行烧录。

2.1.5 Micro-USB(电源)

CM0IO板包含1个Micro-USB(电源)接口,在板上的位置为J6,支持外接5V的电源适配器给IO板供电。

2.1.6 Micro SD卡槽

CM0IO板包含1个Micro SD卡槽,因为Micro SD卡槽仅适用于CM0 Lite,但CM0 Dev Board默认标配8GB eMMC的CM0,故Micro SD卡在CM0 Dev Board上为无效接口。


2.1.7 nRPIBOOT插针

CM0IO板包含1个2-Pin nRPIBOOT插针,在板上的位置为J8,引脚定义为nRPIBOOT/GND。

- 通过跳线帽短接nRPIBOOT和GND: 重新上电会使CM0进入烧录模式
- 未短接:正常运行模式

2.1.8 Raspberry Pi 40-Pin插针

CM0IO板包含1个标准的Raspberry Pi 40-Pin接口,在板上的位置为J1,具体的引脚定义如下表。

2.1.9 预留的引脚

CMOIO板包含多个可用的引脚,支持用户进行外部扩展。

2.1.9.1 Wi-Fi & BT引脚

CM0IO板包含3-Pin的Wi-Fi & BT引脚,在板上的位置为J9,引脚定义为nWireless_Disable/GND/nBT_Disable,具体功能如下:

- 短接nWireless Disable和GND: 关闭Wi-Fi功能
- 短接nBT Disable和GND: 关闭蓝牙功能

2.1.9.2 GLOBAL_EN & RUN_PG引脚

CM0IO板包含3-Pin的GLOBAL_EN & RUN_PG引脚,在板上的位置为J10,引脚定义为GLOBAL_EN/GND/RUN_PG,具体功能如下:

- 短接GLOBAL_EN和GND: 短接时间超过1ms, 使CM0断电重启
- 短接RUN_PG和GND: 复位CM0

2.1.9.3 TV OUT引脚

CM0IO板包含2-Pin的TV_OUT引脚,在板上的位置为J11,引脚定义为TV_OUT/GND,支持扩展1路复合视频信号。

2.1.9.4 Status LED引脚

CM0IO板包含2-Pin的Status_LED引脚,在板上的位置为J12,引脚定义为Status_LED/GND,支持扩展CM0的LED状态查询端口。

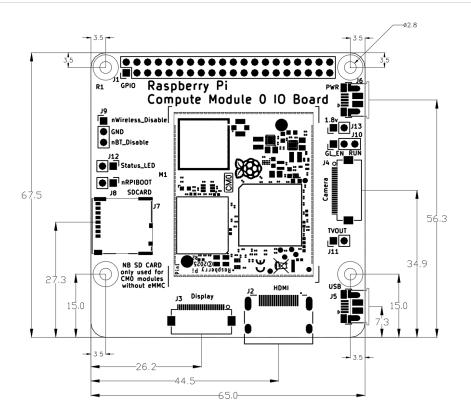
2.1.9.5 1.8v电源引脚

CM0IO板包含2-Pin的1.8v电源引脚,在板上的位置为J13,引脚定义为1.8v/GND,支持扩展1路1.8v电源输出。

2.1.10 无线

CMOIO板默认开启Wi-Fi和蓝牙功能,安装FPC天线后可正常使用。

- 2.4 GHz频段 IEEE 802.11 b/g/n 无线局域网
- 蓝牙4.2标准(支持BLE低功耗模式)

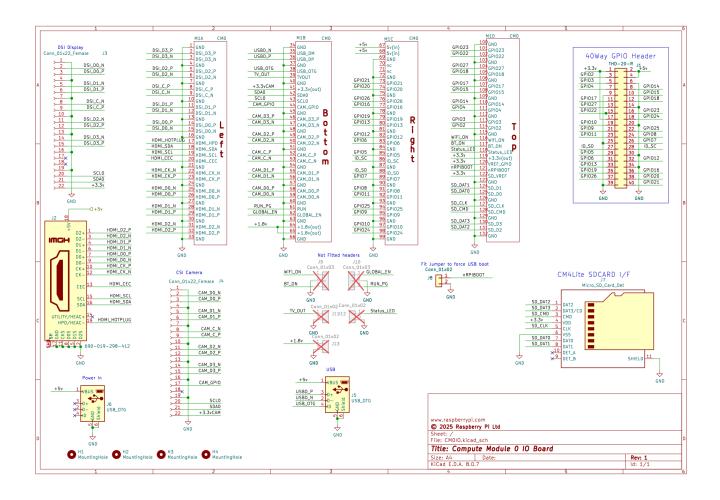

若用户需要禁用Wi-Fi或者蓝牙,可通过短接IO板上预留的引脚来实现。

- 短接nWireless Disable和GND: 关闭Wi-Fi功能
- 短接nBT Disable和GND: 关闭蓝牙功能

2.2 CM0IO板尺寸

CMOIO板尺寸为67.5 mm × 65 mm, 具体的尺寸信息如下图。

单位:mm



2.3 CM0IO板功耗

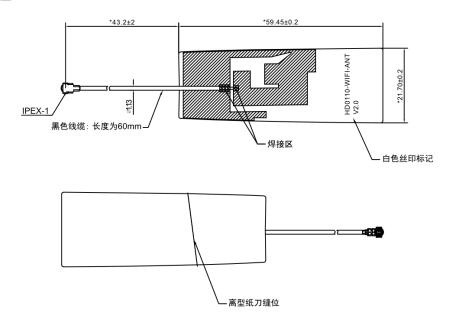
对CM0IO板在不同状态下的功耗进行了测试,具体如下表。

操作系统	测试条件	输入电压	输入电流	功耗
Raspberry Pi OS(Lite) 64-bit-bookworm	空载	4.97 V	97.73 mA	0.49 W
	仅连接键盘	4.97 V	105.03 mA	0.52 W
	连接键盘和HDMI	4.96 V	121.61 mA	0.60 W
	连接键盘、HDMI和 Wi-Fi	4.96 V	146.84 mA	0.73 W
	连接键盘、HDMI和 Wi-Fi,并增加Wi-Fi压 力测试	4.96 V	282.93 mA	1.40 W
	连接键盘、HDMI和Wi-Fi,并增加CPU压力测试	4.91 V	369.99 mA	1.82 W
	连接键盘、HDMI和Wi-Fi ,并增加Wi-Fi 压力测试和CPU压力测试	4.90 V	480.56 mA	2.36 W

2.4 CM0IO板原理图

3 FPC天线规格

介绍FPC天线的规格和外观尺寸。


3.1 FPC天线规格

参数	规格
天线形式	FPC+Cable
工作频段(MHz)	2400 ~ 2500, 5150 ~ 5850
增益 (dBi)	2450MHz: 3.5 5500MHz: 3.1
天线效率(%)	2450MHz: 51.5 5500MHz: 43.5
电压驻波比	< 2.5:1
极化方式	线极化

参数	规格
辐射方向	全向
馈电阻抗 (ohm)	50
功率容量(dBm)	33
天线接口	IPEX-1
天线尺寸 (mm)	59.45 x 21.7
重量(g)	5
工作温度(℃)	-30°-70°
储存温度(℃)	-30°-70°

3.2 FPC天线尺寸

单位:mm

4 订购编码

型 号	配置
Raspberry Pi Compute Module 0 Development Board	Raspberry Pi CM0(CM0100008,512MB SDRAM,8GB eMMC,Wi-Fi/BT) + Raspberry Pi CM0 IO板 + FPC天线