

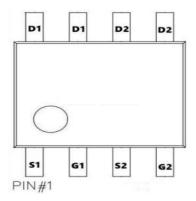
<u>SXSEMI</u>

Description

The SX8G03S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 30V I_{D} = 9.8A$


 $R_{DS(ON)} < 25m\Omega$ @ $V_{GS}=10V$

 $V_{DS} = -30V I_{D} = --9.8A$

 $R_{DS(ON)} < 25m\Omega$ @ $V_{GS}=-10V$

Application

BLDC

Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Symbol	Parameter	N-Ch P-Ch		Units	
VDS	Drain-Source Voltage	30 -30		V	
Vgs	Gate-Source Voltage	±20	±20	V	
l o@Ta=25℃	Continuous Drain Current, V _{GS} @ 10V¹	9.8 -9.8		Α	
b@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V¹	6.3 -6.3		А	
Ідм	Pulsed Drain Current ²	29 -29		А	
EAS	Single Pulse Avalanche Energy ³	80	80	mJ	
P o@T a=25℃	Total Power Dissipation ⁴	46	46	W	
Тѕтс	Storage Temperature Range	-55 to 150		$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150		$^{\circ}$	
Reja	Thermal Resistance Junction-Ambient ¹	85		°C/W	
Rejc	Thermal Resistance Junction-Case ¹	40		°C/W	

30V N+P-Channel Enhancement Mode MOSFET

N-Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30	35		V	
△BVɒss/△Tɹ	BVDSS Temperature Coefficient	Reference to 25℃, lɒ=1mA		0.023		V/°C	
Rds(on)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=5A		16	25	mΩ	
T (DO(ON)	Statio Brain-Godroc Gir-Nesistande	V _G s=4.5V , I _D =3A		24	35		
$V_{GS(th)}$	Gate Threshold Voltage	\/\/	1.2	1.6	2.5	V	
$\triangle V_{\text{GS(th)}}$	V _{GS(th)} Temperature Coefficient	Vgs=Vps , In =250uA		-4.2		mV/℃	
	Drain-Source Leakage Current	V _D s=24V , V _G s=0V , T _J =25°C			1	- uA	
IDSS		V _{DS} =24V , V _{GS} =0V , T _J =55°C			5		
Igss	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	Vds=5V , Id=6A		5.8		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.3		Ω	
Qg	Total Gate Charge (4.5V)			5			
Qgs	Gate-Source Charge	VDS=20V , VGS=4.5V , ID=6A		1.11		nC	
Qgd	Gate-Drain Charge			2.61			
Td(on)	Turn-On Delay Time			7.7			
Tr	Rise Time	 V _{DD} =12V , V _{GS} =10V , R _G =3.3Ω		46			
Td(off)	Turn-Off Delay Time	lo=6A		11		ns	
Tf	Fall Time			3.6			
Ciss	Input Capacitance			416			
Coss	Output Capacitance	Vps=15V , Vgs=0V , f=1MHz		62		pF	
Crss	Reverse Transfer Capacitance			51			
ls	Continuous Source Current ^{1,6}	\/a=\/a=0\/			6.2	Α	
Іѕм	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current			24	Α	
VsD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V	

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2、The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The power dissipation is limited by 175 $^{\circ}\text{C}\textsc{junction}$ temperature
- 4. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

•

30V N+P-Channel Enhancement Mode MOSFET

P-Channel Electrical Characteristics (T」=25℃, unless otherwise noted)

		<u>'</u>				
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	Vgs=0V, Ip= -250µA	-30	-33	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} =0V,	-	-	-1	μA
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D = -250µA	-1.2	-1.5	-2.5	V
DDC(an)	Static Drain-Source on-Resistance note3	Vgs= -10V, ID= -10A	-	16	25	mΩ
RDS(on)		V _G S= -4.5V, I _D = -5A	-	25	30	
Ciss	Input Capacitance		-	1250	-	pF
Coss	Output Capacitance	V _{DS} = -15V, V _{GS} =0V, f=1.0MHz	-	327	-	pF
Crss	Reverse Transfer Capacitance	1-1.0IVII 12	_	278		pF
Qg	Total Gate Charge		-	30	-	nC
Qgs	Gate-Source Charge	V _{DS} = -15V, I _D = -9.1A,	-	5.3	-	nC
Qgd	Gate-Drain("Miller") Charge	V _G s= -10V	_	7.6	_	nC
td(on)	Turn-on Delay Time		-	14	-	ns
tr	Turn-on Rise Time	V _{DD} = -15V, I _D = -6A,	-	20	-	ns
td(off)	Turn-off Delay Time	V _G S= -10V, R _G EN=2.5Ω	-	95	-	ns
tf	Turn-off Fall Time		-	65	-	ns
IS	Maximum Continuous Drain to Source Dioc	le Forward Current			-10	Α
ISM	Maximum Pulsed Drain to Source Did	Source Diode Forward Current		-	-40	Α
VSD	Drain to Source Diode Forward Voltage	Vgs=0V, Is= -11A	_	-0.8	-1.2	V

Note

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3 . The power dissipation is limited by 150℃junction temperature
- 4. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

3

www.sxsemi.com

N-Channel Typical Characteristics

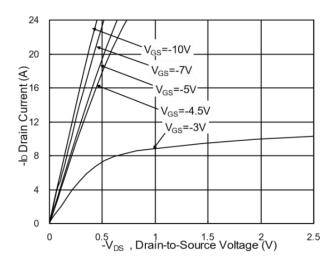


Fig.1 Typical Output Characteristics

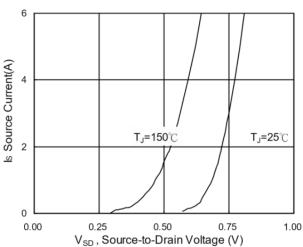


Fig.3 Forward Characteristics Of Reverse

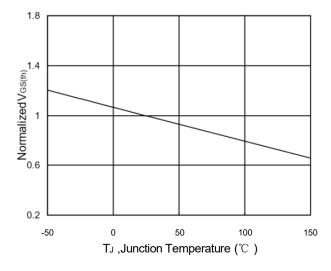


Fig.5 Normalized $V_{GS(th)}$ vs. T_J

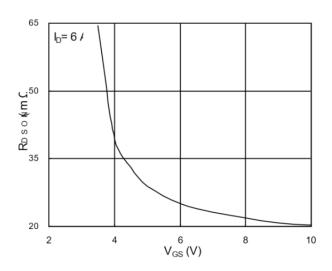


Fig.2 On-Resistance vs. Gate-Source

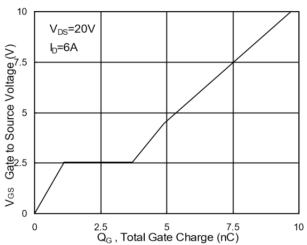


Fig.4 Gate-Charge Characteristics

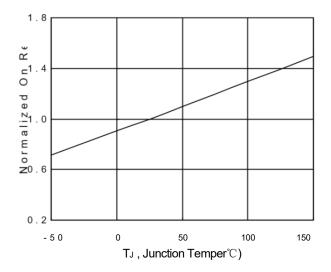
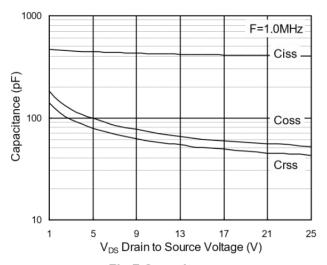



Fig.6 Normalized R_{DSON} vs. T_J

N-Channel Typical Characteristics

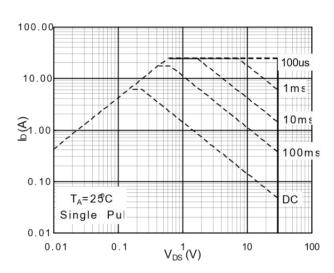


Fig.7 Capacitance

Fig.8 Safe Operating Area

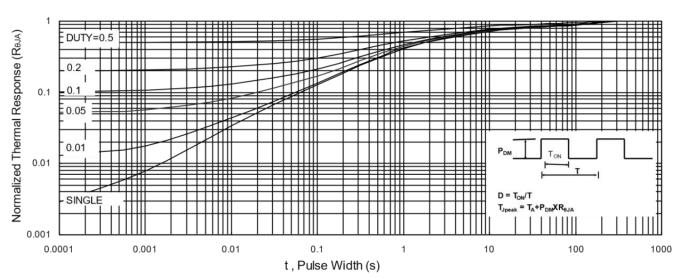
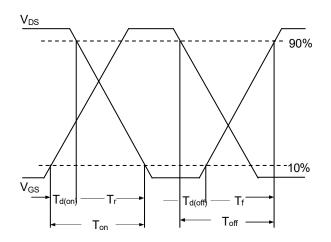



Fig.9 Normalized Maximum Transient Thermal Impedance

5

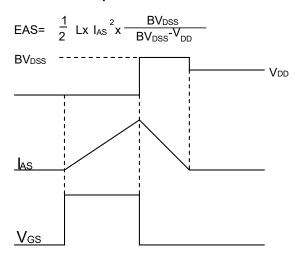


Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

P-Channel Typical Characteristics

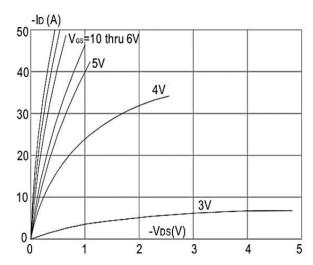


Figure1: Output Characteristics

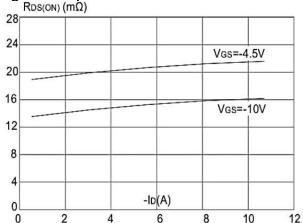


Figure 3:On-resistance vs. Drain Current

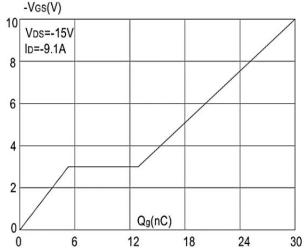
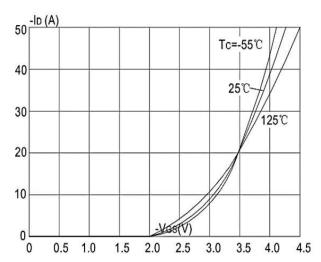



Figure 5: Gate Charge Characteristics

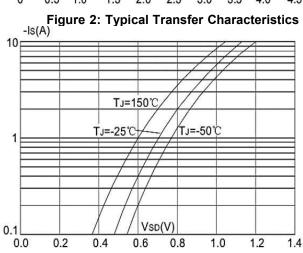
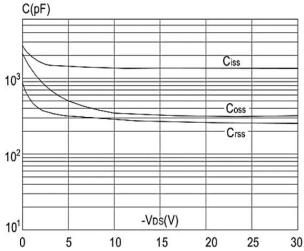



Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

P-Channel Typical Characteristics

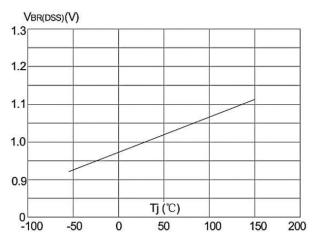


Figure 7: Normalized Breakdown Voltage vs.
Junction Temperature

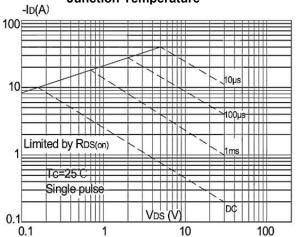


Figure 9: Maximum Safe Operating Area

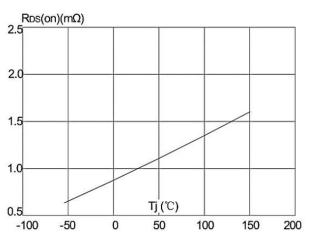


Figure 8: Normalized on Resistance vs. Junction Temperature

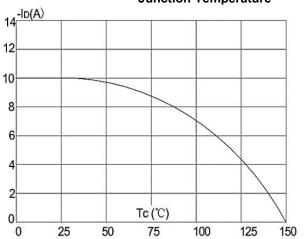


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

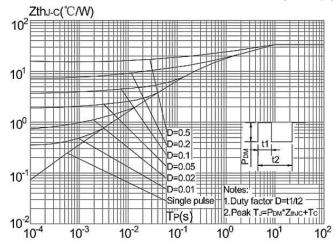
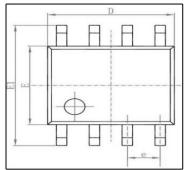
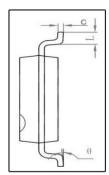
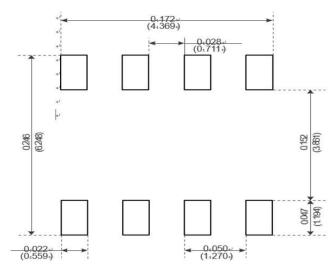




Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient


Package Mechanical Data-SOP-8L-DX-Double

Cl I	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0.004	0. 010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0. 010	
D	4. 700	5. 100	0. 185	0. 200	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0.050	(BSC)	
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	

Recommended Minimum Pads-

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000

8