ﬁ adafruit learning system

Adafruit 1.27" and 1.5" Color OLED Breakout Board

Created by Bill Earl

Adafruit!
26 § ®§ B ®

From ¢

Last updated on 2019-11-05 04:57:51 PM UTC

ﬁ adafruit learning system

Overview
u un om m = W 1
" U m B o ot
p 8 U owm @ o oai
0 ou ow - g aa
0
|
O
LR el
w I v v v
i I \‘ ?\)l - -
< i it
e ;‘ (At I b4 - w
o) , il @
T AN ‘ ‘ E:li "] ']
= i () ')
; i HM\‘\ 7
‘Lx.. il Ll M
] 4
o
0 |
o
9 |

We love our black and white monochrome displays but we also like to dabble with some color now and then. Our big
1.5" color OLED displays are perfect when you need a small display with vivid, high-contrast 16-bit color. The visible
portion of the OLED measures 1.5" diagonal and contains 128x128 RGB pixels, each one made of red, green and blue
OLEDs. Each pixel can be set with 16-bits of resolution for a large range of colors. Because the display uses OLEDs,
there is no backlight, and the contrast is very high (black is really black). We picked this display for its excellent color,
this is the nicest mini OLED we could find!

This OLED uses the SSD1351 driver chip, which manages the display. You can talk to the driver chip using 4-wire write-
only SPI (clock, data, chip select, data/command and an optional reset pin). Included on the fully assembled breakout is
the OLED display and a small boost converter (required for providing 12V to the OLED) and a microSD card holder.
This design includes built-in logic level shifting so you can use it with 3-5VDC power and logic levels. Our example
code shows how to read a bitmap from the uSD card and display it all via SPI.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 3 of 48

https://www.adafruit.com/product/3857

L)
© v ew
-t
i)
L.
me " e W
T
T e W
= I RE
Lo

——

Board Technical Details

1.5" diagonal OLED, 16-bit color

SPl interface

3.3-5V logic and power

Micro-SD card holder

Dimensions: 43.17mm /1.7"x 42mm /165" x 5.42mm / 0.2"

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 4 of 48

ﬁ adafruit learning system
Assembly

- -

). 1.57 5501351

——1 128x128 RGB
3| OLED Display
: UIN: 3-5UDC

Logic: 3-5U

The breakout board comes fully assembled and tested. We include an optional strip of header pins to make it easier to
use this display in a breadboard. The header can be installed in just a few minutes with your soldering iron:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 5 of 48

Prepare the header strip
Cut the header to size and insert (long pins down) into a

breadboard to stabilize for soldering.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 6 of 48

https://learn.adafruit.com/assets/10515
https://learn.adafruit.com/assets/10516

Position the display
Place the display breakout on the header so that the

short pins protrude through the holes.

And Solder!

Solder all pins to assure a good electrical connection.

e e Ty oo Bl L P T R e P A T :-J—_.

e as @b Bh o= 8a ik =
= B

L Ak oAb dn A

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 7 of 48

https://learn.adafruit.com/assets/10517
https://learn.adafruit.com/assets/10518
https://learn.adafruit.com/assets/10519

Remove the protective film
Gently pull up on the tab to remove the film.

L B i b sl ows = Gk = b 4N
A s A & T T e A T

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 8 of 48

https://learn.adafruit.com/assets/10520

ﬁ adafruit learning system
Wiring and Graphics
Test

The pinout ordering is the same for both the 1.27" and 1.5" version of the OLED!

IZ::!.’ZZZ

i

R N N L L N

LI I I)
® 8 0 00

L T T I R I I TR T T T N A
I T I T R O O I I I I O O AR
LN B O O I IR I I O IR O IR

s 8 8 8 8 8888808808
& 8 8 8888080888080
N A O N I O A A A
R N A N N N N RN Y
® 8 8 8 00 008008 0 0 »fy
e s 2 s 80000000l

fritzing

https://adafru.it/sVa

https://adafru.it/sVa

The library supports flexible wiring to minimize pin conflicts with other shields and breakouts. For the initial test, we'll
use the same wiring as the "test" example from the library:

GND -> GND (G)

5v -> VIN (+)

#2 -> SCLK (CL)

#3 -> MOSI (SI)

#4 ->DC

#5 -> OLEDCS (OC)
#6 -> RST (R)

Hint:

If you are confused by the abbreviations on the front of the board, the full signal names are printed on the back!

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 9 of 48

https://cdn-learn.adafruit.com/assets/assets/000/037/787/original/oleddemo.fzz?1480973327

ZoLencs €@
=-RESET 4O

128x128 RGB
OLED Display
UIN: 3-5UDC
Logic: 3-5U

Installing the Arduino software

Now we can run the test software on the Arduino.

Three libraries need to be installed using the Arduino Library Manager...this is the preferred and modern way. From
the Arduino “Sketch” menu, select “Include Library” then “Manage Libraries...”

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 10 of 48

Manage Libraries...

N
Show Sketch Folder . ArduinoHttpClient
Include Library ArduinoSound
Add File... Bridge

This example code is in the public domain. Esplora
*/ Firmata

Type “gfx” in the search field to quickly find the first library — Adafruit_GFX:

o ® Library Manager
Type Al Topic All gfx
Adafruit GFX Library by Adafruit

Adafruit GFX graphics core library, this is the 'core’ class that all our other graphics libraries derive from. Install this library in addition
to the display library for your hardware.
More info

Version 1.3.4 Install

Adafruit ImageReader Library by Adafruit Version 1.0.1 INSTALLED
Companion library for Adafruit_GFX to load images from SD card. Install this library in addition to Adafruit_GFX and the display library for
your hardware (e.g. Adafruit_IL19341)

Repeat the search and install steps, looking for the Adafruit_ZeroDMA and Adafruit_SSD1351 libraries.

After you restart, you should be able to select File=Examples—Adafruit_SSD1351-test - this is the example sketch
that just tests the display by drawing text and shapes. Upload the sketch and you should see the following:

The test sketch demonstrates all the basic drawing functions of the Adafruit GFX Library. Read through the code to
see how to draw text, circles, lines, etc.

For a detailed tutorial on the Adafruit GFX library, including all the functions available please visit the GFX tutorial
page (https://adafru.it/aPXx)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 11 of 48

http://learn.adafruit.com/adafruit-gfx-graphics-library

ﬁ adafruit learning system
Drawing

Bitmaps

12

F"}"O;Tﬁ Adafruit!
24w m m ® ®
25 s @ 8 B ®
26 & 8 8§ ©

Wiring for the Bitmap Example

Drawing bitmaps from the on-board micro SD card requires a few more connections to communicate with the SD card.

The library allows you to use any pins. The Arduino connections listed below match the code in the "bmp" example
from the library:

GND -> GND (G)

5v -> VIN (+)

#7 -> SDCS (SC)

#4 ->DC

#6 -> RST (R)

#5 -> OLEDCS (OC)
#11 -> MOSI (SI)
#12 -> MISO (SO)
#13 -> SCLK (CL)

Note that the Bitmap example code uses hardware SPI wiring for maximum speed. You can still use software
SPI, but make sure that the pin definitions match your wiring and that you modify the example to select the

Software SPI option (#1) in the code. The SPI pins shown are for Atmega-328 processors. To use this wiring
on other processors, software SPI must be used.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 12 of 48

Hint:

IN ITALY

If you are confused by the abbreviations on the front of the board, the full signal names are printed on the back!

© Adafruit Industries

ugd-d

'J;
40} aso[]

Id

ZoLencs €@
=_RESET 40

OLED Display
UIN: 3-5UDC
Lagics 3=5U

https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board

Page 13 of 48

Bitmap Example Sketch

To display bitmaps from the on-board micro SD slot, you will need a micro SD
card (http://adafru.it/102) formatted FAT16 or FAT32 (they almost always are by default).

Mmicro i
5>

== E
BEE

oSS TaiWAN

There is a built in microSD card slot on the rear of the breakout and we can use that to load bitmap images!
It's really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which can be installed through the

Arduino Library Manager (Sketch—Include Library—=Manage Libraries...). Enter “imageread” in the search field and the
library is easy to spot:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 14 of 48

http://www.adafruit.com/products/102

LN | Library Manager
Type All B Topic Al B imageread

Adafruit ImageReader Library by Adafruit
Companion library for Adafruit_GFX to load images from SD card. Install this library in addition to Adafruit_GFX and the display library for

your hardware (e.g. Adafruit_ILI9341).
More info

Version 1.0.2 Install

Close

Next you can either download the image here or copy it from the images folder from inside the library files.

https://adafru.it/Ey0

https://adafru.it/Ey0

Insert the card
Insert the micro SD card into the slot on the back of the

SSD1351 breakout board.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 15 of 48

https://raw.githubusercontent.com/adafruit/Adafruit_ImageReader/master/images/lily128.bmp
https://learn.adafruit.com/assets/10530

¥ | Adafruit_ImageReader_Library

o Adafruit_ImageReader.cpp Copy the bitmap ﬂle

h Adafruit_ImageReader.h Copy the file "lily128.bmp" from the
> Bl examples Adafruit_ImageReader_Library\images folder (or
v Images

B adabot.bmp
W daffodil.bmp to the root directory of your micro-SD card.

B minibot.bmp
Al miniwoof.bmp
B parrot.bmp
B purple.bmp
0 rgbwheel.bmp
& wales.bmp

Al wootfbmp
library.properties
README.md

wherever you saved it if you downloaded the file) over

EEN e Sieich ook Help

o :"ai LRSS Load the bitmap example sketch
i Roennt - Tzampiles for Adsinstt Matro . .
Simtchbonk [i *- Select "Examples->Adafruit_ImageReader_Library-
Ciove W amou . >BreakoutSSD1351" and upload it to your Arduino.
SofwareSerial (3
Gave An oRE &P "
PageSehp ONP
Priet XP | adain AD¥LEES
Adairui AAMGERTs Library
Adatngi CCEEYY Litesry
Adulruh Circult Plarpgrend
Acatngn DosSiar
Adainh Doxftandatet

Adatnsh OFX Librany
Adairuit HXBIST Libeary
Addafnsn ILG344

Acairult geflnader Libracy BreakoutS S0 330
Adalrull Keypad Breakout5501 351

FRAF T FTFTFTYF

Aciairuit Moo ol [BroakoutS TP F35-1 381 20
Adaingi Q5F L BreakooASTT 735-160u1 28
Adairul RARETS [BreakoutS T 7358 160xR0
Adairull seeses Lkary L3 FeatrerWingHXBI5T
Adairgit SGPI0 Sensor " Faatrarwingll 341
Adaingg SiE351 Library L FeaTwrWingSTT 735
Adairuit $501306 E PyPortsl

Adalnun 5501325 L ShissdiLin341

Adaingit $501331 OLID Driver Library for Arduing " Shisid5TT 728
Astni s TEMBEA Barar -

In the example, find the following section of code:

// Load full-screen BMP file 'rgbwheel.bmp' at position (0,0) (top left).
// Notice the 'reader' object performs this, with 'tft' as an argument.
Serial.print(F("Loading rgbwheel.bmp to screen..."));

stat = reader.drawBMP("/rgbwheel.bmp", tft, 0, 0);
reader.printStatus(stat); // How'd we do?

On the line with reader.drawBMP() change "/rgbwheel.bmp" to "/lily128.bmp" .

After that, upload it to your Arduino. When the Arduino restarts, you should see the flower as below!

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 16 of 48

https://learn.adafruit.com/assets/76132
https://learn.adafruit.com/assets/76133

From Adafruit
24 s " B ®u ®
25 s @ & 8§ ®
26 @ B & ®

To make new bitmaps, make sure they are less than 128 by 128 pixels and save them in 24-bit BMP format! They must
be in 24-bit format, even if they are not 24-bit color as that is the easiest format for the Arduino to decode. You can
rotate images using the setRotation() procedure.

The BreakoutSSD1351 example sketch shows everything you need to work with BMP images. Here’s just the vital bits
broken out...

Several header files are included at the top of the sketch. All of these are required...they let us access the SD card and
the display, and provide the image-reading functions:

#include <SPI.h>

#include <SD.h>

#include <Adafruit GFX.h> // Core graphics library
#include <Adafruit SSD1351.h> // Hardware-specific library
#include <Adafruit ImageReader.h> // Image-reading functions

Several #defines relate to hardware pin numbers, all fixed values when using the shield.

Then we declare the tft screen object, and the image-reader object like so:

#define SD CS 7 // SD card select pin

#define TFT CS 5 // TFT select pin

#define TFT_DC 4 // TFT display/command pin

#define TFT RST 6 // Or set to -1 and connect to Arduino RESET pin

Adafruit SSD1351 tft = Adafruit SSD1351(SCREEN WIDTH, SCREEN HEIGHT, &SPI, TFT CS, TFT DC, TFT RST);

Adafruit ImageReader reader; // Class w/image-reading functions

After the SD and TFT’s begin() functions have been called (see the example sketch again, in the setup() function),

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 17 of 48

you can then call reader.drawBMP() to load an image from the card to the screen:

ImageReturnCode stat; // Status from image-reading functions
stat = reader.drawBMP("/1ily128.bmp", tft, 0, 0);

You can draw as many images as you want — though remember the names must be less than 8 characters long. Call
like so:

reader.drawBMP(filename, tft, x, y);

'x'and 'y' are pixel coordinates where top-left corner of the image will be placed. Images can be placed anywhere on
screen...even partially off screen, the library will clip the section to load.

Image loading is explained in greater depth in the Adafruit_GFX library guide. (https://adafru.it/DpM)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 18 of 48

https://learn.adafruit.com/adafruit-gfx-graphics-library/loading-images

ﬁ adafruit learning system
CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro MO Express or the Metro M4 Express. You
can also use boards such as the Feather MO Express or the Feather M4 Express. We recommend either the Metro M4
or the Feather M4 Express because it's much faster and works better for driving a display. For this guide, we will be
using a Feather M4 Express. The steps should be about the same for the Feather MO Express or either of the Metros. If
you haven't already, be sure to check out our Feather M4 Express (https://adafru.it/EEm) guide.

Adafruit Feather M4 Express - Featuring ATSAMD51

$22.95

IN STOCK

Add To Cart

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to it. Be sure to check out
the Adafruit Guide To Excellent Soldering (https://adafru.it/drl). After that the breakout should be ready to go.

Required CircuitPython Libraries

To use this display with displayio , there is only one required library.

https://adafru.it/FxO

https://adafru.it/FxO

First, make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.
Next, you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install
these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great
page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.
Remember for non-express boards, you'll need to manually install the necessary libraries from the bundle:

® adafruit_ssd1351
Before continuing make sure your board's lib folder or root filesystem has the adafruit_ssd1351 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of a library so the code didn't get
overly complicated.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 19 of 48

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-guide-excellent-soldering
https://github.com/adafruit/Adafruit_CircuitPython_SSD1351/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries

https://adafru.it/FiA

https://adafru.it/FiA

Go ahead and install this in the same manner as the driver library by copying the adafruit_display_text folder over to
the lib folder on your CircuitPython device.

CircuitPython Code Example

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 20 of 48

https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text.

import board

import displayio

import terminalio

from adafruit display text import label
from adafruit ssd1351 import SSD1351

Release any resources currently in use for the displays
displayio.release displays()

spi = board.SPI()
tft cs = board.D5
tft dc = board.D6

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs,
reset=board.D9, baudrate=16000000)

display = SSD1351(display bus, width=128, height=128)

Make the display context
splash = displayio.Group(max size=10)
display.show(splash)

color bitmap = displayio.Bitmap(128, 128, 1)
color palette = displayio.Palette(1)
color palette[0] = OxO00FFO0 # Bright Green

bg sprite = displayio.TileGrid(color bitmap,
pixel shader=color palette,
x=0, y=0)

splash.append(bg sprite)

Draw a smaller inner rectangle

inner bitmap = displayio.Bitmap(108, 108, 1)

inner palette = displayio.Palette(1)

inner_palette[0] = 0xAA0088 # Purple

inner sprite = displayio.TileGrid(inner bitmap,
pixel_shader=inner_palette,
x=10, y=10)

splash.append(inner sprite)

Draw a label

text = "Hello World!"

text_area = label.Label(terminalio.FONT, text=text, color=0xFFFFO0, x=30, y=64)
splash.append(text area)

while True:
pass

Let's take a look at the sections of code one by one. We're going to take a look at the code for the 1.5" display, but
there is also an example available for the 128x96 1.27" display. The example is the same as we are covering in here but
with the numbers adjusted for the different height.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 21 of 48

We start by importing the board so that we can initialize SPI, displayio, terminalio for the font, a label, and
the adafruit ssd1351 driver.

import board

import displayio

import terminalio

from adafruit display text import label
from adafruit ssd1351 import SSD1351

Next we release any previously used displays. This is important because if the Feather is reset, the display pins are not
automatically released and this makes them available for use again.

displayio.release displays()

Next, we set the SPI object to the board's SPI with the easy shortcut function board.SPI() . By using this function, it
finds the SPI module and initializes using the default SPI parameters.

spi = board.SPI()
tft cs = board.D5
tft dc = board.D6

In the next line, we set the display bus to FourWire which makes use of the SPI bus. Additionally, we need to set the
baudrate to 16MHz since that is the maximum speed that the SSD1351 chip will run at. Anything higher creates strange
artifacts on the screen.

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs,
reset=board.D9, baudrate=16000000)

Finally, we initialize the driver with a width of 128 and a height of 128. If we stopped at this point and ran the code, we
would have a terminal that we could type at and have the screen update.

display = SSD1351(display bus, width=128, height=128)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 22 of 48

Code done running.
Waiting for reloa

Next we create a background splash image. We do this by creating a group that we can add elements to and adding
that group to the display. In this example, we are limiting the maximum number of elements to 10, but this can be
increased if you would like. The display will automatically handle updating the group.

splash = displayio.Group(max size=10)
display.show(splash)

Next we create a Bitmap which is like a canvas that we can draw on. In this case we are creating the Bitmap to be the
same size as the screen, but only have one color. The Bitmaps can currently handle up to 256 different colors. We
create a Palette with one color and set that color to OXOOFFOO which happens to be green. Colors are Hexadecimal
values in the format of RRGGBB. Even though the Bitmaps can only handle 256 colors at a time, you get to define what
those 256 different colors are.

color bitmap = displayio.Bitmap(128, 128, 1)
color palette = displayio.Palette(1)
color palette[0] = OxO0FFOO # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (0, 0) which
represents the display's upper left.

bg sprite = displayio.TileGrid(color bitmap,
pixel shader=color palette,
x=0, y=0)

splash.append(bg sprite)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 23 of 48

Next we will create a smaller purple square. The easiest way to do this is the create a new bitmap that is a little smaller
than the full screen with a single color and place it in a specific location. In this case, we will create a bitmap that is 10
pixels smaller on each side. The screen is 128x128, so we'll want to subtract 20 from each of those numbers.

We'll also want to place it at the position (10, 10) so that it ends up centered.

inner bitmap = displayio.Bitmap(108, 108, 1)
inner palette = displayio.Palette(1)
inner palette[0] = OxAAGO88 # Purple
inner sprite = displayio.TileGrid(inner bitmap,
pixel shader=inner palette,
x=10, y=10)
splash.append(inner sprite)

Since we are adding this after the first square, it's automatically drawn on top. Here's what it looks like now.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 24 of 48

Next let's add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font. In this
example, we won't be doing any scaling because of the small resolution compared to some of the other displays, so
we'll add the label directly the main group. If we were scaling, we would have used a subgroup.

Labels are centered vertically, so we'll place it at 64 for the Y coordinate, and around 30 pixels make it appear to be
centered horizontally, but if you want to change the text, change this to whatever looks good to you. Let's go with
some yellow text, so we'll pass it a value of OxFFFFOO .

text = "Hello World!"
text area = label.Label(terminalio.FONT, text=text, color=0xFFFF00, x=30, y=64)
splash.append(text area)

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced by a
terminal.

while True:
pass

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 25 of 48

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 26 of 48

https://learn.adafruit.com/circuitpython-display-support-using-displayio

* adafruit learning system
Python Wiring and Setup

Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB
Display (https://adafru.it/u1C) module. This module allows you to easily write Python code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.
Since there's dozens of Linux computers/boards you can use we will show wiring for Raspberry Pi. For other
platforms, please visit the guide for CircuitPython on Linux to see whether your platform is

supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Note this is not a kernel driver that will let you have the console appear on the TFT. However, this is handy
when you can't install an fbtft driver, and want to use the TFT purely from 'user Python' code!

You can only use this technique with Linux/computer devices that have hardware SPI support, and not all
single board computers have an SPI device so check before continuing

ILI9341 and HX-8357-based Displays
2.2" Display

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

D/C connects to our SPI Chip Select pin. We'll be using GPIO 24, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 25 but this can be changed later as well.
Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 27 of 48

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

2.2 TED
320x240

fritzing

https://adafru.it/G4f

https://adafru.it/G4f

24" 2.8" 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them for SPI. To do that, you'll need to
either solder bridge some pads on the back or connect the appropriate IM lines to 3.3V with jumper wires. Check the
back of your display for the correct solder pads or IM lines to put it in SPI mode.

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

D/C connects to our SPI Chip Select pin. We'll be using GPIO 24, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 25 but this can be changed later as well.

|:| These larger displays are set to use 8-bit data lines by default and may need to be modified to use SPI.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 28 of 48

https://cdn-learn.adafruit.com/assets/assets/000/082/156/original/2.2_TFT.fzz?1570566706

e N7

320x240

fritzing

https://adafru.it/G7E

https://adafru.it/G7E

ST7789 and ST7735-based Displays

1.3",1.54", and 2.0" IPS TFT Display

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

RST connects to our Reset pin. We'll be using GPIO 25 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 24, but this can be changed later as well.

0zexotre
141 SdI .0°2

fritzing

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 29 of 48

https://cdn-learn.adafruit.com/assets/assets/000/082/180/original/2.8_TFT.fzz?1570741981

https://adafru.it/G4B

https://adafru.it/G4B

0.96", 114", and 1.44" Displays

® Vin connects to the Raspberry Pi's 3V pin
® GND connects to the Raspberry Pi's ground
® CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
® MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
® CS connects to our SPI Chip Select pin. We'll be using CEO
® RST connects to our Reset pin. We'll be using GPIO 25 but this can be changed later.
® D/C connects to our SPI Chip Select pin. We'll be using GPIO 24, but this can be changed later as well.
: e
-
B 4
:..)
eIl ©O
fritzing
https://adafru.it/Gae
https://adafru.it/Gae
1.8" Display
® GND connects to the Raspberry Pi's ground
® Vin connects to the Raspberry Pi's 3V pin
® RST connects to our Reset pin. We'll be using GPIO 25 but this can be changed later.
® D/C connects to our SPI Chip Select pin. We'll be using GPIO 24, but this can be changed later as well.
® CS connects to our SPI Chip Select pin. We'll be using CEO
® MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI
® CLK connects to SPI clock. On the Raspberry Pi, thats SLCK
[]

LITE connects to the Raspberry Pi's 3V pin. This can be used to separately control the backlight.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 30 of 48

https://cdn-learn.adafruit.com/assets/assets/000/082/171/original/2.0_TFT.fzz?1570658768
https://cdn-learn.adafruit.com/assets/assets/000/082/203/original/1.44_TFT.fzz?1570816823

82TX09T

141 .8°1T

-
.
oy
=]
43
P
. .
| —
!/
/-
A
LA]
2 C.._ e S—
e® - e LR B A R
e L) LI B i
e e L B B) LI B B B) e®
e L R LI B B ve
. e " 00 LI B B
2 L B L B A k.o
X . s LI B > e
e . s s LI 2 A
o L B B] L B B B > >
A .- s " 0 LI B B B 9.
2D - s " LI I A
* e - s & s s 8 s 8 A4
A . 8 8 8 s 8 8 8 8 e’
» L B LI B B B A S
> e LB R B A . e .

fritzing

https://adafru.it/Gab

https://adafru.it/Gab

SSD1351-based Displays

1.27" and 1.5" OLED Displays

GND connects to the Raspberry Pi's ground

Vin connects to the Raspberry Pi's 3V pin

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CS connects to our SPI Chip Select pin. We'll be using CEO

RST connects to our Reset pin. We'll be using GPIO 25 but this can be changed later.

D/C connects to our SPI Chip Select pin. We'll be using GPIO 24, but this can be changed later as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 31 of 48

https://cdn-learn.adafruit.com/assets/assets/000/082/201/original/1.8_TFT.fzz?1570816745

4370 894 P2TXV2T TSETASS u5°1

1.5" OLED
128x128

(YH3IUYD) IS

=
c
a
o

ETHERNET

LI I B O B B O B I R B B
® 8 8 8 s 0 s e e e e e

® 8 8 8 s s s s s e s

® 8 8 8 s 0 e e e e e e

® 9 8 e 0 e e e s e e

LI T R T T O T

LI A R T T

*® 0 8 e e e e e e e e

fritzing

https://adafru.it/GC-

https://adafru.it/GC-

SSD1331-based Display

0.96" OLED Display

MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

D/C connects to our SPI Chip Select pin. We'll be using GPIO 24, but this can be changed later.
RST connects to our Reset pin. We'll be using GPIO 25 but this can be changed later as well.
CS connects to our SPI Chip Select pin. We'll be using CEO

Vin connects to the Raspberry Pi's 3V pin

GND connects to the Raspberry Pi's ground

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board

Page 32 of 48

https://cdn-learn.adafruit.com/assets/assets/000/083/530/original/1.5_OLED.fzz?1572907728

EEEREE 111
DSI (DISPLAY)

* 00 00
* 0000

0.96" OLED

* 0 0 00
LB R

L]
L]
e
L]
L]
.
Ll
L]
.
L
e
.
LN
. 8 A >e
* 9 0 * & 0 0 @ > B
* 2 0 "0 L B) oA
- 8
s s 0 8 » ® 8 »
[], L
(V¥IHYD) IS) * 00 00 TR
= * " 8 0 0 . 8 0 0 0
N -
'. & g o8 0 00 s 00 0 Al
— E be * o 0 @ . 0 0 A
i L] L] * " 0 00 e »
L 3 - »
L] L] * 5
e L] L] s o 0 0 0 o
LN - * 0 0 @
ETHERNET S $ax : LA 88 s
2 Y . TEEE e
. L L] s & 8 o > ®
L 3 L
L » * ® »
e ® o0 00 Y A
fﬂto

https://adafru.it/Gav

https://adafru.it/Gav

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython support in Python. This may also
require enabling SPI on your platform and verifying you are running Python 3. Since each platform is a little different,
and Linux changes often, please visit the CircuitPython on Linux guide to get your computer

ready (https://adafru.it/BSN)!

Python Installation of RGB Display Library
Once that's done, from your command line run the following command:
® sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure you aren't trying to use
CircuitPython on Python 2.x, it isn't supported!

If that complains about pip3 not being installed, then run this first to install it:
® sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't, you can run the following to
install it:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 33 of 48

https://cdn-learn.adafruit.com/assets/assets/000/082/267/original/0.96_OLED.fzz?1570828216
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

® sudo apt-get install ttf-dejavu

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with custom fonts. There are several
system libraries that PIL relies on, so installing via a package manager is the easiest way to bring in everything:

® sudo apt-get install python3-pil

That's it. You should be ready to go.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 34 of 48

ﬁ adafruit learning system
Python Usage

Now that you have everything setup, we're going to look over three different examples. For the first, we'll take a look at
automatically scaling and cropping an image and then centering it on the display.
Displaying an Image

Here's the full code to the example. We will go through it section by section to help you better understand what is
going on. Let's start by downloading an image of Blinka. This image has enough border to allow resizing and cropping
with a variety of display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script. Here's the code we'll be loading onto
the Raspberry Pi. We'll go over the interesting parts.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit rgb display.ili9341 as il1i9341

import adafruit rgb display.st7789 as st7789 # pylint: disable=unused-import
import adafruit rgb display.hx8357 as hx8357 # pylint: disable=unused-import
import adafruit rgb display.st7735 as st7735 # pylint: disable=unused-import
import adafruit rgb display.ssd1351 as ssd1351 # pylint: disable=unused-import
import adafruit rgb display.ssd1331 as ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs pin = digitalio.DigitalInOut(board.CEQ)

dc pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the displav:

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 35 of 48

#disp = st7789.S5T7789(spi, rotation=90 # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=90 # 1.3", 1.54" ST7789
#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53, y offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y offset=3, # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = 1i119341.ILI9341(spi, rotation=90, #2.2", 2.4", 2.8", 3.2" ILI9341

cs=cs_pin, dc=dc pin, rst=reset pin, baudrate=BAUDRATE)
pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen ratio = width / height
if screen ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Crop and center the image

x = scaled width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Display image.

disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the display drivers. That is followed by
defining a few pins here. The reason we chose these is because they allow you to use the same code with the PIiTFT if
you chose to do so.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 36 of 48

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit rgb display.ili9341 as il1i9341
import adafruit rgb display.st7789 as st7789
import adafruit rgb display.hx8357 as hx8357
import adafruit rgb display.st7735 as st7735
import adafruit rgb display.ssd1351 as ssd1351
import adafruit rgb display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs pin = digitalio.DigitalInOut(board.CEQ)

dc pin = digitalio.DigitalInOut(board.D24)
reset pin = digitalio.DigitalInOut(board.D25)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of displays. The exception to this is
the SSD1351 driver, which will automatically limit it to 16MHz even if you pass 24MHz. We'll set up out SPI bus and then
initialize the display.

We wanted to make these examples work on as many displays as possible with very few changes. The ILI9341 display
is selected by default. For other displays, go ahead and comment out the line that starts with:

disp = ili9341.1LI9341(spi,

and uncomment the line appropriate for your display. The displays have a rotation property so that it can be set in just
one place.

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

#disp = st7789.5T7789(spi, rotation=90 # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=90 # 1.3", 1.54" ST7789
#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53, y offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x_offset=2, y offset=3, # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = 1i119341.ILI9341(spi, rotation=90, #2.2", 2.4", 2.8", 3.2" ILI9341

cs=cs_pin, dc=dc pin, rst=reset pin, baudrate=BAUDRATE)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees, we need to swap the width and
height for our calculations, otherwise we just grab the width and height. We will create an image with our dimensions
and use that to create a draw object. The draw object will have all of our drawing functions.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 37 of 48

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't strictly necessary since it will be
overwritten by the image, but it kind of sets the stage.

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in the same directory that you are
running the script from. Feel free to change it if it doesn't match your configuration.

image = Image.open("blinka.jpg")

Here's where it starts to get interesting. We want to scale the image so that it matches either the width or height of the
display, depending on which is smaller, so that we have some of the image to chop off when we crop it. So we start by
calculating the width to height ration of both the display and the image. If the height is the closer of the dimensions, we
want to match the image height to the display height and let it be a bit wider than the display. Otherwise, we want to
do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions and using a Bicubic rescaling
method, we reassign the newly rescaled image back to image . Pillow has quite a few different methods to choose
from, but Bicubic does a great job and is reasonably fast.

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen ratio = width / height
if screen ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to begin cropping it so that it ends up
centered. We do that by using a standard centering function, which is basically requesting the difference of the center
of the display and the center of the image. Just like with scaling, we replace the image variable with the newly
cropped image.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 38 of 48

Crop and center the image

x = scaled width // 2 - width // 2

y = scaled_height // 2 - height // 2

image = image.crop((x, y, x + width, y + height))

Finally, we take our image and display it. At this point, the image should have the exact same dimensions at the display
and fill it completely.

disp.image(image)

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar to the displayio example, but it
uses Pillow instead. Here's the code for that.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as ili9341

import adafruit rgb display.st7789 as st7789 # pylint: disable=unused-import
import adafruit rgb display.hx8357 as hx8357 # pylint: disable=unused-import
import adafruit rgb display.st7735 as st7735 # pylint: disable=unused-import
import adafruit rgb display.ssd1351 as ssd1351 # pylint: disable=unused-import
import adafruit rgb display.ssd1331 as ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.
BORDER = 20
FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):
cs _pin = digitalio.DigitalInOut(board.CEQ)
de nin = diaitalio.DiaitalTnOut(hoard.ND?5)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 39 of 48

- = g e et gt et im A — s — e ———

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long

Create the display:

#disp = st7789.ST7789(spi, rotation=90 # 2.0" ST7789

#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=90 # 1.3", 1.54" ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x_offset=53, y offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351

#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = 11i9341.ILI9341(spi, rotation=90, #2.2", 2.4", 2.8", 3.2" ILI9341

cs=cs_pin, dc=dc_pin, rst=reset pin, baudrate=BAUDRATE)
pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Draw a smaller inner purple rectangle
draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
fill=(170, 0, 136))

Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)

draw.text((width//2 - font width//2, height//2 - font height//2),
text, font=font, fill=(255, 255, 0))

Display image.
disp.image(image)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 40 of 48

Just like in the last example, we'll do our imports, but this time we're including the ImageFont Pillow module because
we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as il1i9341

Next we'll define some parameters that we can tweak for various displays. The BORDER will be the size in pixels of
the green border between the edge of the display and the inner purple rectangle. The FONTSIZE will be the size of
the font in points so that we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation, and create a draw object.If you
have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous
example. After that, we will setup the background with a green rectangle that takes up the full screen. To get green,
we pass in a tuple that has our Red, Green, and Blue color values in it in that order which can be any integer from 0 to
255.

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our example in displayio quickstart, except
the hexadecimal values have been converted to decimal. We use the BORDER parameter to calculate the size and
position that we want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on your Pi in the location in the code. We
also make use of the FONTSIZE parameter that we discussed earlier.

Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', FONTSIZE)

Now we draw the text Hello World onto the center of the display. You may recognize the centering calculation was the
same one we used to center crop the image in the previous example. In this example though, we get the font size
values using the getsize() function of the font object.

Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)

draw.text((width//2 - font width//2, height//2 - font height//2),
text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 41 of 48

disp.image(image)

Hello World!

Displaying System Information

" pinijepe hq

"G

2 BZEXB¥e

nl'C

141

c

\'»
—
-
—

JBFEB

In this last example we'll take a look at getting the system information and displaying it. This can be very handy for

system monitoring. Here's the code for that example:

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as ili9341
import adafruit_rgb_display.st7789 as st7789
import adafruit rgb display.hx8357 as hx8357
import adafruit_rgb_display.st7735 as st7735
import adafruit rgb display.ssd1351 as ssd1351
import adafruit rgb display.ssd1331 as ssd1331

Configuration for CS and DC pins (these are PiTFT defaults):

cs _pin = digitalio.DigitalInOut(board.CEQ)
dc pin = digitalio.DigitalInOut(board.D25)
reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz)
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:
#dien = <t+77R0 QT77R0(<cni rontatinn=0A

pylint:
pylint:
pylint:
pylint:
pylint:

disable=unused-import
disable=unused-import
disable=unused-import
disable=unused-import
disable=unused-import

2 A" QT77R0Q

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board

Page 42 of 48

..... ~ R

#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=90 # 1.3", 1.54" ST7789
#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53, y offset=40, # 1.14" ST7789

L T S T T P - -

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357

#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R

#disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, # 1.44" ST7735R
#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351

#disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351

#disp = ss5d1331.SSD1331(spi, rotation=180, # 0.96" SSD1331

disp = 11i9341.ILI9341(spi, rotation=90, #2.2", 2.4", 2.8", 3.2" ILI9341

cs=cs_pin, dc=dc_pin, rst=reset pin, baudrate=BAUDRATE)
pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

First define some constants to allow easy positioning of text.
padding = -2
X =0

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

while True:
Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Shell scripts for system monitoring from here:

https://unix.stackexchange.com/questions/119126/command-to-display-memory-usage-disk-usage-and-
cpu-load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"

MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zone®/temp | awk \'{printf \"CPU Temp: %.1f C\", $(NF-0) /
1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 43 of 48

Write four lines of text.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")
y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#000OFF")
y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Display image.
disp.image(image)
time.sleep(.1)

Just like the last example, we'll start by importing everything we imported, but we're adding two more imports. The first
one is time so that we can add a small delay and the other is subprocess so we can gather some system
information.

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as il1i9341

Next, just like in the first two examples, we will set up the display, setup the rotation, and create a draw object. If you
have are using a different display than the ILI9341, go ahead and adjust your initializer as explained in the previous
example.

Just like in the first example, we're going to draw a black rectangle to fill up the screen. After that, we're going to set
up a couple of constants to help with positioning text. The first is the padding and that will be the Y-position of the
top-most text and the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.
padding = -2
x =0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True:, it will loop until Control+C is pressed on the keyboard. The
first item inside here, we clear the screen, but notice that instead of giving it a tuple like before, we can just pass 0
and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the Operating System to get information.
The in each command is passed through awk in order to be formatted better for the display. By having the OS do the

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 44 of 48

work, we don't have to. These little scripts came from https://unix.stackexchange.com/questions/119126/command-
to-display-memory-usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,$2,$3*100/$2 }'"
MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,$2,$5}'"

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zone®/temp | awk \'{printf \"CPU Temp: %.1f C\", $(NF-0) /
1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass color information. We can pass it as
a color string using the pound symbol, just like we would with HTML. With each line, we take the height of the line
using getsize() and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#0OFF00")
y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#000OFF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Finally, we write all the information out to the display using disp.image() . Since we are looping, we tell Python to sleep
for 0.1 seconds so that the CPU never gets too busy.

disp.image(image)
time.sleep(.1)

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 45 of 48

JOHEBITL/N LIl 42'CT OTEXBHFT

IP: 192.168.11.33

CPU Load: 0.08
Mem: 15

o T
o iy

*_‘OS'I’u g

&
s

5305 150U
53
ninJjepe

2704

NI

.
" B
S
-
& 2

N9

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 46 of 48

* adafruit learning system
Downloads and

Links

Data Sheets:

SSD1351 Display Controller Datasheet (https://adafru.it/sVb)

1.5" OLED Display Module datasheet (https://adafru.it/cBE)
Fritzing objects in the Adafruit Fritzing library (https://adafru.it/aP3)
EagleCAD PCB for 1.27" Color OLED (https://adafru.it/rgB)
EagleCAD PCB for the 1.5" Color OLED (https://adafru.it/rqC)

Schematic

Click to enlarge

l-'..

o it Ic
1+ PR o I
| I !
0 0 s = |
| h l S0 & HHE
p| = I A * I adafruit OCOp
fir
1.27_128=96_RGBOLED_REU-B
12/3/2014 45452 PM | Sheet: 1/1
Orauing: >AUTHAR Adafruit Industries
i 2 3 4 | 5 &

For the level shifter we use the CD74HCA4050 (https://adafru.it/Ekk) which has a typical propagation delay of “10ns

© Adafruit Industries https://learn.adafruit.com/adafruit-1-5-color-oled-breakout-board Page 47 of 48

http://www.adafruit.com/datasheets/SSD1351-Revision%201.3.pdf
http://www.adafruit.com/datasheets/UG-2828GDEDF11.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-1.27inch-Color-OLED-Breakout-PCB
https://github.com/adafruit/Adafruit-1.5inch-Color-OLED-PCB
http://www.ti.com/product/CD74HC4050

© Adafruit Industries Last Updated: 2019-11-05 04:57:51 PM UTC Page 48 of 48

	Guide Contents
	Overview
	Board Technical Details

	Assembly
	Prepare the header strip
	Position the display
	And Solder!
	Remove the protective film

	Wiring and Graphics Test
	Hint:

	Installing the Arduino software
	Drawing Bitmaps
	Wiring for the Bitmap Example
	Hint:

	Bitmap Example Sketch
	Insert the card
	Copy the bitmap file
	Load the bitmap example sketch
	Image loading is explained in greater depth in the Adafruit_GFX library guide. (https://adafru.it/DpM)

	CircuitPython Displayio Quickstart
	Adafruit Feather M4 Express - Featuring ATSAMD51
	Preparing the Breakout
	Required CircuitPython Libraries
	Code Example Additional Libraries
	CircuitPython Code Example
	Where to go from here

	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display

	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Downloads and Links
	Data Sheets:
	Schematic

