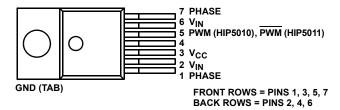


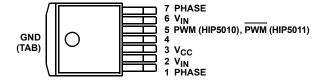
HIP5010, HIP5011

NOT RECOMMENDED FOR NEW DESIGNS NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc DATASHEET

FN4029 Rev.5.00 March 1996


7V, 17A SynchroFET™ Complementary Drive Synchronous Half-Bridge

Designed with the P6 and Pentium® in mind, the Intersil SynchroFET™ family provides a new approach for implementing a synchronous rectified buck switching regulator. The SynchroFET replaces two power DMOSs, a Schottky diode, two gate drivers and synchronous control circuitry. The complementary drive circuit turns the upper FET on and the lower FET off when the input from the PWM is high. When the input from the PWM goes low the upper FET turns off and the lower FET turns on. The HIP5011 has a PWM pin that inverts the relationship from the input to PHASE. This architecture allows the designer to utilize a low cost single-ended PWM controller in either a current or voltage mode configuration. The SynchroFET operates in continuous conduction mode reducing EMI constraints and enabling high bandwidth operation. Several features ensure easy start-up. First, the supply currents stay below specification as the supply voltages ramp up; no unexpected surges occur that might perturb a soft-start or deplete a charge-pump. Second, any power-up sequence of the V_{CC}, V_{IN}, or PWM pins can be used without causing large currents. Third, the chip operates when V_{CC} is greater than 2V so V_{CC} can be created from a charge pump powered from V_{IN}.


Pinouts

HIP5010IS1, HIP5011IS1 (SIP - VERTICAL)

TOP VIEW

HIP5010IS, HIP5011IS (SIP - GULLWING) TOP VIEW

Features

- · Complementary Drive, Half-Bridge Power NMOS
- · Use With Low-Cost Single-Output PWM Controllers
- Improve Efficiency Over Conventional Buck Converter with Schottky Clamp
- Minimum Deadtime Provided by Adaptive Shoot-Through Protection Eliminates External Schottky
- · Grounded Case for Low EMI and Simple Heatsinking
- Low Operating Current
- · Frequency Exceeding 1MHz
- · Dual Polarity Input Options
- · All Pins Surge Protected


Applications

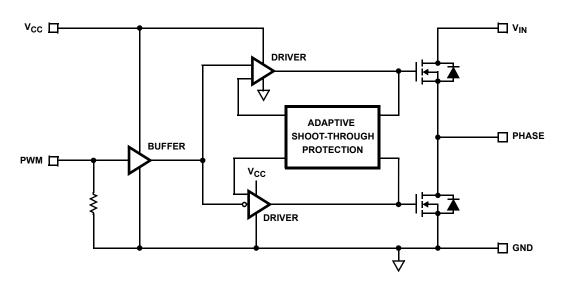
- 5V to ≤3.3V Synchronous Buck Converters
- Pentium and P6 Power Supplies
- PowerPC™ Power Supplies
- Bus Terminations (BTL and GTL)
- Drive 5V Motors Directly from Microprocessor

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
HIP5010IS	-40 to 85	7 Ld Gullwing SIP	Z7.05B
HIP5010IS1	-40 to 85	7 Ld Staggered Vertical SIP	Z7.05C
HIP5011IS	-40 to 85	7 Ld Gullwing SIP	Z7.05B
HIP5011IS1	-40 to 85	7 Ld Staggered Vertical SIP	Z7.05C

Typical Application Block Diagram

SYNCHRONOUS RECTIFIED BUCK CONVERTER


Pentium® is a registered trademark of Intel Corporation.

PowerPC™ is a trademark of International Business Machines.

SynchroFET™ is a trademark of Intersil Corporation.

Non-Inverting SynchroFET Block Diagram

HIP5010

Inverting SynchroFET Block Diagram

PWM DRIVER ADAPTIVE SHOOT-THROUGH PROTECTION DRIVER OR DRIVER

Absolute Maximum Ratings

Supply Voltage, V _{CC}
Input Voltage V _{IN} +7V
I _{PHASE} , I _{VIN} , I _{GND} (T _J = 25 ^o C)
I _{PHASE} , I _{VIN} , I _{GND} (T _J = 150°C)
PWM Input4V to +16V
ESD Classification
Lead Temperature (Soldering 10s) (Lead Tips Only) 300°C
Storage Temperature Range65°C to 150°C
Junction Temperature Range40°C to 150°C

Operating Conditions

Supply Voltage, VCC	+12V, ±20%
Input Voltage VIN	0V to 5.5V
Supply Voltage, VCC, minimum for charge-pumped sta	art-up . +4.0V

Thermal Information (Typical)

	θ JC $\dagger\dagger$	θ _{JA} (^o C/W)†				
Package	(°C/W)	0	1	2	3	3†††
SOIC (IB)	26	63	45	42	41	35
SIP (IS)	2	55	30	25	24	18
SIP (IS1)	2	-	-	-	-	-

- † Versus additional square inches of 1 ounce copper on the printed circuit board.
- †† 0_{JC} is measured to pin 12 for the SOIC. Printed circuit board had 1 square inch of copper. For SIP Packages value shown is typical with an infinite heat sink.
- ††† 200 linear feet per minute of air flow.

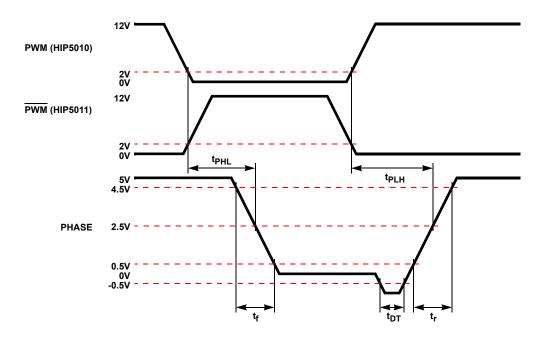
 $\begin{array}{l} I_{PHASE}.\,SIPs:11.5A(RMS),\,11.2A(DC);\,SOIC:7.4A(RMS),\,7.4A(DC)\\ I_{VIN}\,\ldots\,SIPs:10.0A(RMS),\,8.5A(DC);\,SOIC:6.4A(RMS),\,6.4A(DC)\\ I_{GND},\ldots.SIPs:8.5A(RMS),\,6.0A(DC);\,SOIC:5.4A(RMS),\,5.4A(DC) \end{array}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the recommended operating conditions of this specification is not implied.

Electrical Specifications

			T _J = 25°C		$T_J = -40^{\circ}C$ $T_J = 150^{\circ}C$			
PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	MAX	UNITS
r _{DS(ON)} Upper MOSFET	R _{DSU}	V _{CC} = 12V, V _{IN} = 5V	-	34	39	-	65	mΩ
r _{DS(ON)} Lower MOSFET	R _{DSL}	V _{CC} = 12V, V _{IN} = 5V	-	36	42	-	68	mΩ
V _{IN} Operating Current	I _{VINO}	V _{IN} = 5V, No Load, 500kHz	-	5	8	-	10	mA
V _{IN} Quiescent Current	I _{VIN}	PWM or PWM = V _{CC} or GND	-	0.1	10	-	100	μΑ
V _{CC} Operating Current	Icco	V _{CC} = 12V, 500kHz	-	8	12	-	15	mA
V _{CC} Quiescent Current (HIP5010)	IcciH	PWM = V _{CC}	-	80	-	-	400	μΑ
V _{CC} Quiescent Current (HIP5010)	I _{CCIL}	PWM = GND	-	0.1	10		100	μА
V _{CC} Quiescent Current (HIP5011)	ICCNIH	PWM = V _{CC}	-	0.1	10	-	100	μА
V _{CC} Quiescent Current (HIP5011)	ICCNIL	PWM = GND	-	140	-	-	400	μΑ
Low Level PWM Input Voltage	V _{IL}		-	1.8	-	1	-	V
High Level PWM Input Voltage	V _{IH}		-	2.1	-	1	3	V
PWM Input Voltage Hysteresis	V _{IHYS}		-	0.3	-	-	-	V
Input Pulldown Resistance (HIP5010)	R _{PWM}		-	220	-	100	400	kΩ
Input Pullup Resistance (HIP5011)	R _{PWM}		-	220	-	100	400	kΩ

Switching Specifications


			т	T _J = 25°C		$T_J = -40^{\circ}C$ $T_J = 150^{\circ}C$		
PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	MAX	UNITS
Upper Device Turn-Off Delay	t _{PHL}	V _{CC} = 12V, I _{PHASE} = -1A	-	30	50	-	80	ns
Lower Device Turn-Off Delay	t _{PLH}	V _{CC} = 12V, I _{PHASE} = +1A	-	30	50	-	80	ns
Dead Time	t _{DT}	V _{CC} = +12V, I _{PHASE} = -1A	-	10	-	-	-	ns
Phase Rise-Time	t _r	V _{CC} = 12V, I _{PHASE} = -1A	-	20	-	-	-	ns
Phase Fall-Time	t _f	V _{CC} = 12V, I _{PHASE} = +1A	-	20	-	-	-	ns

Pin Descriptions

SYMBOL	DESCRIPTION
V _{CC}	Positive supply to control logic and gate drivers. De-couple this pin to GND.
V _{IN}	FET Switch Input Voltage. De-couple this pin to GND. Tie all V _{IN} terminals together.
PHASE	Output. Tie all phase terminals together.
PWM (HIP5010) PWM (HIP5011)	Single Ended Control Input. This input connects to the PWM controller output.
GND	System Ground.

Timing Diagram

NOTE: I_{PHASE} = +1A for t_{PLH} and $t_f,\,I_{PHASE}$ = -1A for $t_{PHL},\,t_{DT},$ and $t_f.$

FIGURE 1.

Typical Performance Curves

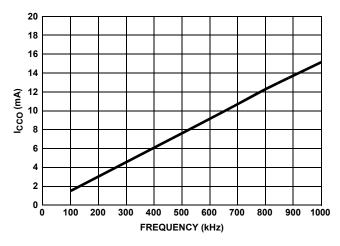


FIGURE 2. $I_{\mbox{CCO}}$ vs FREQUENCY

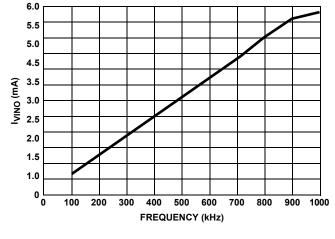


FIGURE 3. I_{VINO} vs FREQUENCY

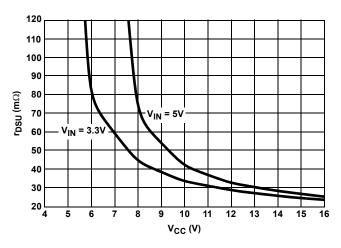


FIGURE 4. R_{DSU} vs V_{CC}

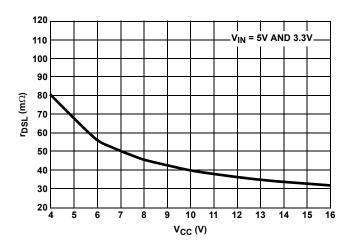


FIGURE 5. R_{DSL} vs V_{CC}

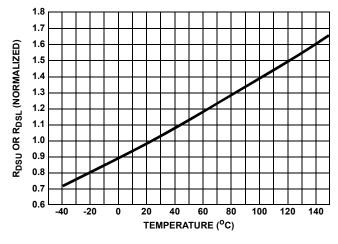
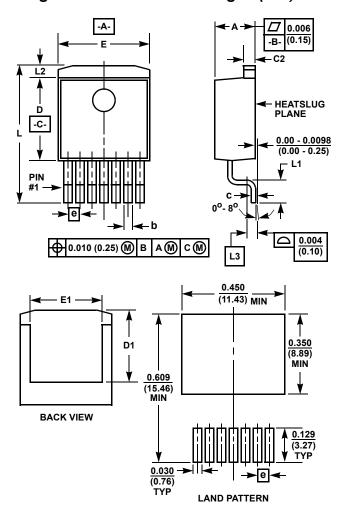
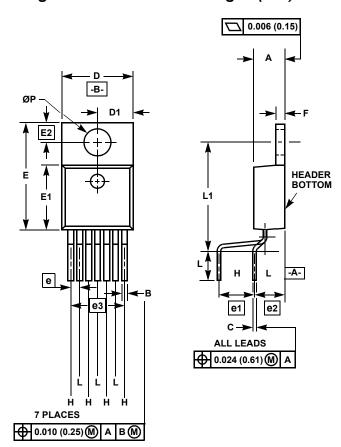



FIGURE 6. $R_{\mbox{\scriptsize DSU}}$ or $R_{\mbox{\scriptsize DSL}}$ vs temperature

Single-In-Line Plastic Packages (SIP)

Z7.05B7 LEAD PLASTIC SINGLE-IN-LINE PACKAGE SURFACE MOUNT "GULLWING" LEAD FORM


	INCHES		MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.170	0.180	4.32	4.57	-
C2	0.048	0.055	1.22	1.39	5
D	0.350	0.370	8.89	9.39	-
Е	0.395	0.405	10.04	10.28	-
D1	0.310	-	7.88	-	-
E1	0.310	-	7.88	-	-
L	0.549	0.569	13.95	14.45	-
L1	0.068	0.088	1.72	2.24	-
L2	0.045	0.055	1.15	1.40	-
L3	0.030 BSC		0.76 BSC		4
b	0.028	0.034	0.71	0.86	5, 6, 7
С	0.018	0.024	0.46	0.60	5
е	0.050 BSC		1.27 BSC		-

Rev. 2 12/95

NOTES:

- These package dimensions are within allowable dimensions of JEDEC MO-169AC, Issue A.
- 2. Controlling dimension: Inch.
- 3. Dimensioning and tolerance per ANSI Y14.5M-1982.
- 4. Gauge plane L3 is parallel to heatslug plane.
- 5. Dimensions include lead finish.
- 6. Leads are not allowed above the datum -B- .
- Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" by more than 0.003" (0.08mm).

Single-In-Line Plastic Packages (SIP)

Z7.05C7 LEAD PLASTIC SINGLE-IN-LINE PACKAGE STAGGERED VERTICAL LEAD FORM

	INCHES		MILLIN		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.170	0.180	4.32	4.57	-
В	0.028	0.034	0.71	0.86	3, 4
С	0.018	0.024	0.46	0.60	3
D	0.395	0.405	10.04	10.28	-
D1	0.198	0.202	5.03	5.13	-
Е	0.595	0.605	15.11	15.37	-
E1	0.350	0.370	8.89	9.39	-
E2	0.110	BSC	2.79 BSC		
е	0.050 BSC		1.27	BSC	-
e1	0.200	BSC	5.08 BSC		-
e2	0.169	BSC	4.29 BSC		-
e3	0.300	0.300 BSC		BSC	-
F	0.048	0.055	1.22	1.39	3
L	0.150	0.176	3.81	4.47	-
L1	0.600	0.620	15.24	15.74	-
ØP	0.147	0.152	3.73	3.86	3

Rev. 1 4/98

NOTES:

- 1. Controlling dimension: INCH.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Dimensions include lead finish.
- Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall not cause lead width to exceed maximum "B" by more than 0.003 inches (0.08mm).

© Copyright Intersil Americas LLC 1996-2002. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

