

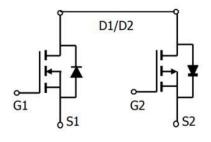
Description

The SX20G06GD uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 60V I_{D} = 25A$

 $R_{DS(ON)} < 40 m\Omega$ @ $V_{GS}=10V$


 $V_{DS} = -60V$ $I_{D} = -19A$

 $R_{DS(ON)} < 90 m\Omega$ @ V_{GS} =-10V

Application

Boost driver

Brushless motor

Absolute Maximum Ratings (Tc=25℃ unless otherwise noted)

Cumbal	Boundary	Ra	Rating		
Symbol	Parameter	N-Channel	P-Channel	Units	
VDS	Drain-Source Voltage	60	-60	V	
VGS	Gate-Source Voltage	±20	±20	V	
ID@TC=25℃	Continuous Drain Current, VGS @ 10V1	25	-19	А	
ID@TC=100°C	Continuous Drain Current, VGS @ 10V1	14	-8.5	А	
IDM	Pulsed Drain Current2	60	-30	А	
EAS	Single Pulse Avalanche Energy3	22	29.8	mJ	
IAS	Avalanche Current	21	-19	А	
PD@TC=25℃	Total Power Dissipation4	50	50	W	
TSTG	Storage Temperature Range	-55 to 175	-55 to 175	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 175	-55 to 175	${\mathbb C}$	
RθJA	Thermal Resistance Junction-Ambient 1		62		
RθJC	Thermal Resistance Junction-Case1	3		°C/W	

N-Channel Electrical Characteristics (TJ =25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	60	65		V
△BVDSS/△T J	BV _{DSS} Temperature Coefficient	Reference to 25°C,I _D =1mA		0.063		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=5A		32	40	0
ND3(ON)	V _{GS} =4.5V , I _D =4A			48	60	mΩ
VGS(th)	Gate Threshold Voltage	\/ \/ \ \ \ 050\	1.2	1.75	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , Id =250uA		-5.24		mV/℃
IDCC	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	
IDSS		V _{DS} =48V , V _{GS} =0V , T _J =55°C			5	uA
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	VDS=5V , ID=4A		28		S
Qg	Total Gate Charge (4.5V)			19		
Qgs	Gate-Source Charge	V _{DS} =48V , V _{GS} =4.5V , I _D =4A		2.6		nC
Qgd	Gate-Drain Charge			4.1		
Td(on)	Turn-On Delay Time			3		
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =3.3Ω,		34		
Td(off)	Turn-Off Delay Time	, KG-3.32, lb=4A		23		ns
Tf	Fall Time			6.0		
Ciss	Input Capacitance			1027		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		65		pF
Crss	Reverse Transfer Capacitance			45		
IS	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			2.5	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2% 3 . The EAS data shows Max. rating . The test condition is V DD =25V,V GS =10V,L=0.1mH,IAS =21A
- 4. The power dissipation is limited by 150 $\!\!\!\!^{\circ}\!\!\!\!^{\circ}$ junction temperature
- 5. The data is theoretically the same as I D and I DM , in real applications , should be limited by total power dissipation

www.sxsemi.com

P-Channel Electrical Characteristics (TJ =25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , In=-250uA	-60	-65		V
△BVDSS/△T	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.03		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=-10V , Ip=-3A		70	90	0
KD3(ON)	Static Dialif-Source Off-Nesistance-	Vgs=-4.5V , ID=-2A		88	100	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =-250uA	-1.2	1.75	-2.5	V
IDSS	Duning Courses London Courses	V _{DS} =-48V , V _{GS} =0V , T _J =25℃			1	uA
IDSS	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =55℃			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	VDS=-5V , ID=-3A		8.5		S
Qg	Total Gate Charge (-4.5V)			12.1		
Qgs	Gate-Source Charge	VDS=-48V , VGS=-4.5V , ID=-3A		2.2		nC
Qgd	Gate-Drain Charge			6.3		
Td(on)	Turn-On Delay Time			9.2		
Tr	Rise Time	V _{DD} =-15V ,		20.1		
Td(off)	Turn-Off Delay Time	V _{GS} =-10V , R _G =3.3Ω, l _D =-1A		46.7		ns
Tf	Fall Time			9.4		
Ciss	Input Capacitance			1137		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		76		pF
Crss	Reverse Transfer Capacitance			50		
IS	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-2.5	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 $\,$ FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- $3\sqrt{DD} = -25V$, V GS = -10V, L=0.1 mH, IAS = -19A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation.

3

www.sxsemi.com

N-Channel Typical Characteristics

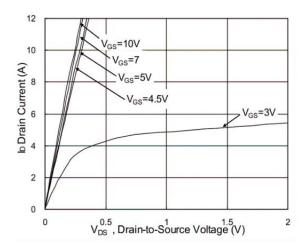


Fig.1 Typical Output Characteristics

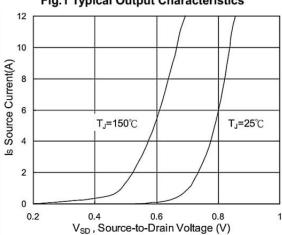


Fig.3 Source Drain Forward Characteristics

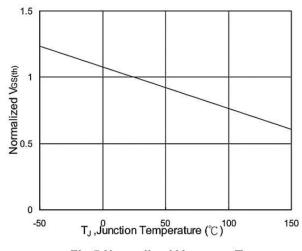


Fig.5 Normalized V_{GS(th)} vs. T_J

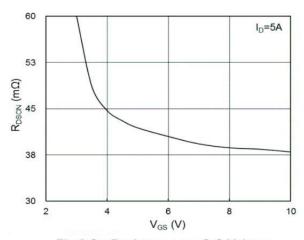


Fig.2 On-Resistance vs. G-S Voltage

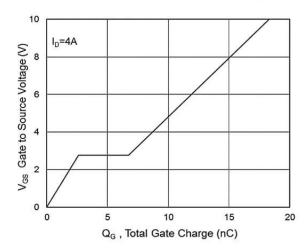


Fig.4 Gate-Charge Characteristics

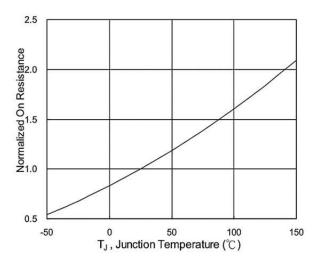
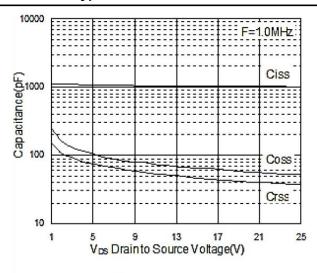



Fig.6 Normalized RDSON vs. TJ

N-Channel Typical Characteristics

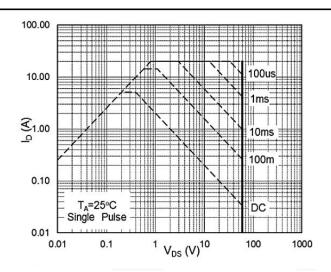


Fig.7 Capacitance

Fig.8 Safe Operating Area

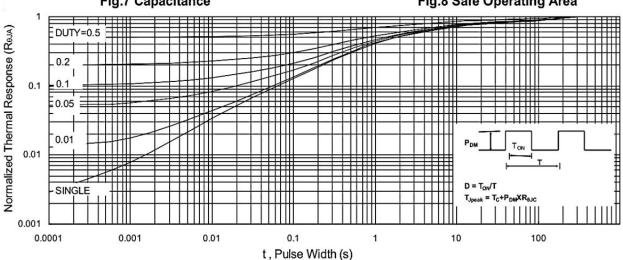
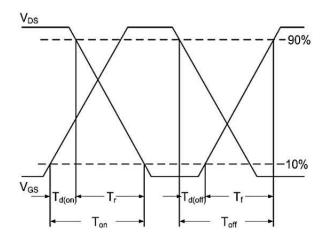


Fig.9 Normalized Maximum Transient Thermal Impedance



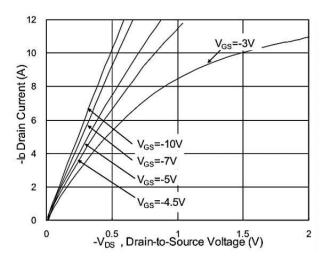

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Waveform

P-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

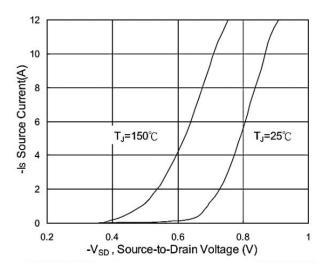


Fig.3 Source Drain Forward Characteristics

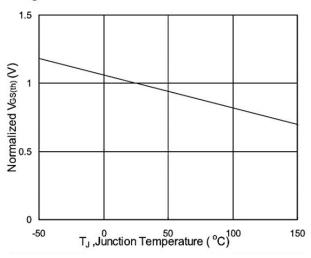


Fig.5 Normalized V_{GS(th)} vs. T_J

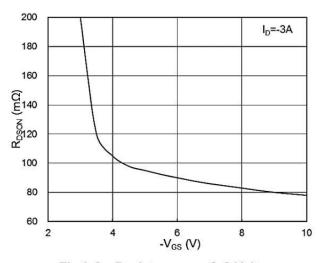


Fig.2 On-Resistance vs. G-S Voltage

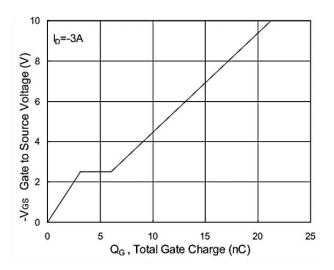


Fig.4 Gate-Charge Characteristics

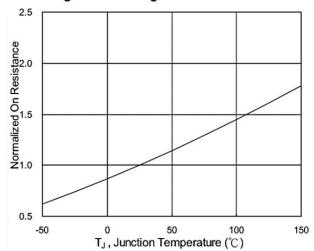


Fig.6 Normalized RDSON vs. TJ

P-Channel Typical Characteristics

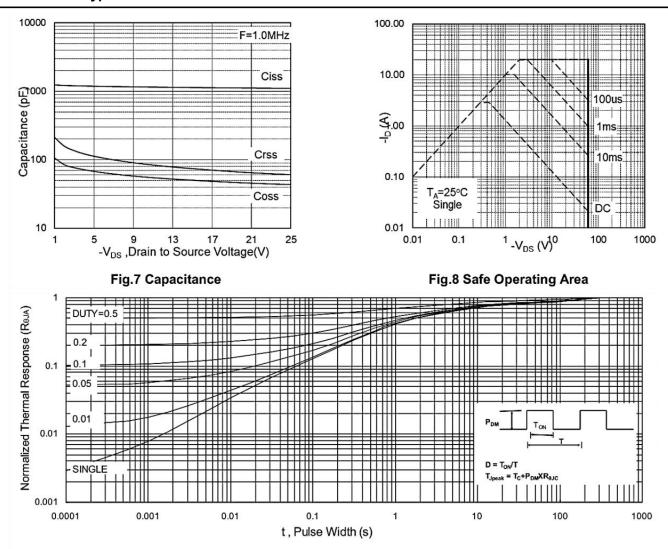


Fig.9 Normalized Maximum Transient Thermal Impedance

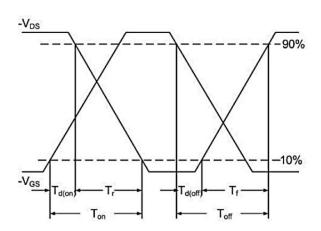


Fig.10 Switching Time Waveform

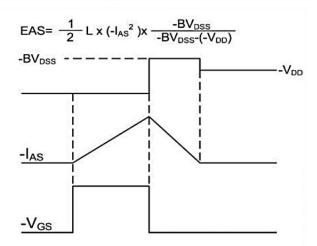
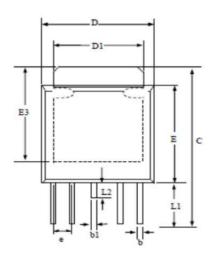
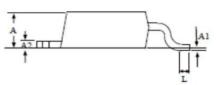




Fig.11 Unclamped Inductive Waveform

Package Mechanical Data:TO-252-4L

SYMBOLS	Millimeters			
JILLOLS	MIN	NOM	MAX	
D	6.30	6.55	6.80	
D1	4.80	5.35	5.90	
С	9.30	9.75	10.20	
E	5.30	5.80	6.30	
E3	4.50	5.15	5.80	
L	0.90	1.35	1.80	
Ll	2.00	2.53	3.05	
L2	0.50	0.85	1.20	
b	0.30	0.50	0.70	
bl	0.40	0.60	0.80	
A	2.10	2.30	2.50	
A2	0.40	0.53	0.65	
A1	0.00	0.10	0.20	
e	1.20	1.30	1.40	

1.All Dimensions Are in Millimeters.

2 Dimension Does Not Include Mold Protrusions.

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	TO-252-4L		2500