

JLHF4MR120RD3E7DN

LD3 Half-Bridge Module with SiC Trench MOSFET

Features

- · Electrical features
 - Silicon Carbide MOSFET
 - Maximum junction temperature 175°C
 - Low Inductive Layout
 - High current density
 - Low switching losses
- Mechanical features
 - Package with CTI >200
 - Solderable Pins
 - Isolated copper baseplate using AMB technology

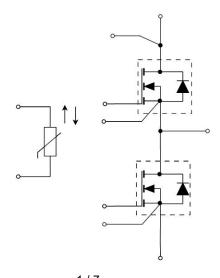
LD3 Pack

MARKING DIAGRAM

Typical Applications

- EV Chargers
- Industrial Automation & Testing
- Solar

JINLAN = Company Name


JLHF4MR120RD3E7DN = Specific Device Code

YYWW = Year and Work Week Code

XXXXX = Serial Number

QR code = Custom Assembly Information

Description

Package Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS,f=50Hz,t=60s	4.0	kV
Internal isolation		basic insulation(class 1,IEC 61140)	Si ₃ N ₄	
Comparative tracking index (electrical)	СТІ		>200	
RTI Elec.	RTI	housing	140	${\mathbb C}$

Package Characteristic values

		Note and an allet an		Values			
Parameter	Parameter Symbol Note or test condition		Min.	Тур.	Max.	Unit	
Stray Inductance	L _{CE}				20		nH
Module Lead Resistance, Terminal to Chip	R _{cc'+EE'}	T _C =25°C, per swi	tch		0.80		mΩ
Storage Temperature Range	T _{STG}			-40		125	$^{\circ}$
М	Mounting torque for module mounting	-Mounting according to valid application note	M5, Screw	3.0		6.0	Nm
М	Terminal connection torque	-Mounting according to valid application note	M6, Screw	2.5		5.0	Nm
Weight	G				340	I	g

SIC MOSFET

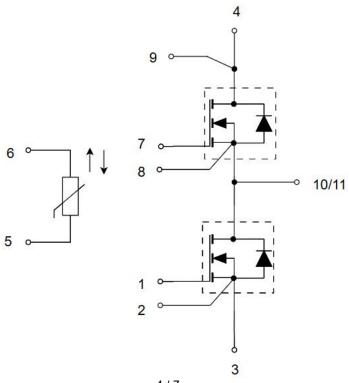
Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

Symbol	Parameter	Conditions	Value	Unit
V _{DSS}	Drain-source voltage	T _{vj} =25℃	1200	٧
I _{DN}	Implemented drain current	V _{GS} =18V T _c = 25℃	450	Α
I _{DDC}	Continuous DC drain current	Collector Current @T _{vl} =175℃,V _{GS} =18V,T _c =65℃	400	Α
I _{DRM}	Repetitive peak drain current	verified by design, t_p limited by T_{v_jmax}	900	Α
V _{GS max}	Gate-source voltage, max. transient voltage	AC (f >1Hz)	-8 / +21	٧
V _{GS OP}	Gate-source voltage, max.static voltage (Recommended)		-3 / +18	V

Characteristics (Tc = 25°C unless otherwise noted)

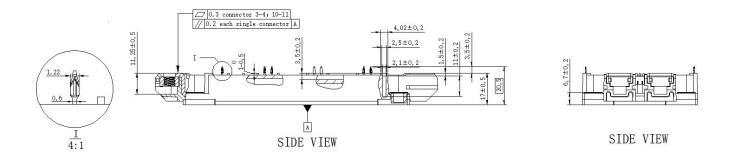
Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
	Drain acurae en resistante	V _{GS} = 18 V, I _{DN} =400A, T _{vj} = 25°C		2.65		mΩ
R _{DS(on)} Drain-source on-resistance		V _{GS} = 18 V, I _{DN} = 400 A, T _{vj} =150°C		3.45		11122
V _{GS(TH)}	Gate Threshold Voltage	VGS = VDS, ID =100 mA,T _{vj} = 25°C	2.0		3.0	V
I _{DSS}	Drain-Source Leakage Current	V _{GS} = -3V, V _{DS} =1200V		30	100	μA
less	Gate-Source Leakage Current	V _{GS} = -4V, V _{DS} = 0V		4	100 -	nA
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $+18V$, V_{DS} = $0V$		1	100	nA
R _{Gint}	Internal Gate Resistance	f=1 MHz		1.1		Ω
C _{ISS}	Input Capacitance			27.2		pF
Coss	Output capacitance	V _{GS} = 0 V, f = 100kHz, V _{DS} = 800V		1.76		pF
C _{RSS}	Reverse Transfer Capacitance	VGS - 0 V, 1 - 100M 12, VDS - 000V		95.2		pF
Q _G	Total Gate Charge	V _{GS} = -3/18 V, V _{DS} = 800 V, I _{DS} = 400 A		304.8		nC
td(on)	Turn-On Delay Time			102.4		
tr	Rise Time	T _J = 25°C		180		ne
td(off)	Turn-off Delay Time	$V_{GS} = -5/15V$, $V_{DS} = 600 V$, $I_{DS} = 400 A$, $R_{Gon} = 4.7 \Omega$,		223.2		ns
tf	Fall Time	$R_{Goff} = 4.7\Omega$ Inductive load		77.6		
Eon	Turn-On Switching Loss per Pulse	muuciive loau		12.8		mJ
Eoff	Turn Off Switching Loss per Pulse			20		1110
td(on)	Turn-On Delay Time			TBD		
tr	Rise Time	T 450°0		TBD		
td(off)	Turn-off Delay Time	$T_J = 150$ °C $V_{GS} = -5/15V$, $V_{DS} = 600$ V,		TBD		ns
tf	Fall Time	$I_{DS} = 400 \text{ A}, R_{Gon} = 4.7\Omega,$ $R_{Goff} = 4.7\Omega$		TBD		
Eon	Turn-On Switching Loss per Pulse	Inductive load		TBD		
Eoff	Turn Off Switching Loss per Pulse			TBD		- mJ
RthJC	Thermal resistance	Junction-to-Case (per MOS)		0.104		K/W
T _{vj op}		Temperature under switching conditions	-40		175 ¹⁾	°C

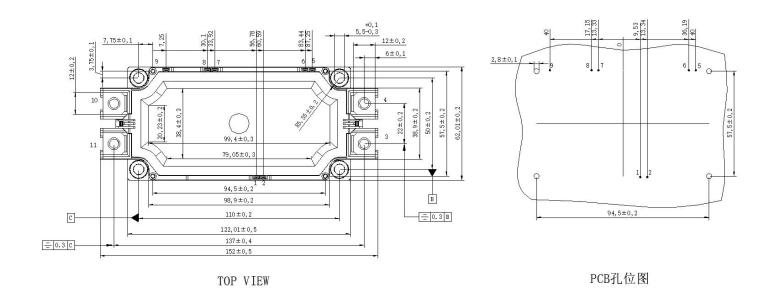
¹⁾ $T_{vj\,op}$ > 175 $^\circ\!\mathbb{C}$ is only allowed for operation at overload conditions.


Reverse Diode Characteristics (Tc=25°C unless otherwise noted)

Cumbal	Dovomatov	Took Condition		Value			Linit
Symbol Parameter		Test Condition		Min	Тур	Max	Unit
.,	Die de Fernand Velte ne	VOD 0V 1 000A	T _v j = 25 °C		4.7		V
V _{SD}	Diode Forward Voltage	VGS= -3V, I _{SD} = 200A	T _v j = 150 °C		4.3		V

NTC Characteristics


Symbol	Parameter	Note or Test Condition	Value			Unit
Syllibol	Farameter	Parameter Note of Test Condition	Min	Тур	Max	UIIIL
R ₂₅	Rated Resistance	T _C = 25°C		5		kΩ
ΔR/R	Deviation of R100	T _C =100 ℃,R ₁₀₀ =493Ω	-5		5	%
P ₂₅	Power Dissipation	T _C = 25°C			20	mW
B _{25/50}	B-value	R ₂ =R ₂₅ exp[B _{25/50} (1/T ₂ - 1/(298.15K))]		3375		К
B _{25/80}	B-value	R ₂ =R ₂₅ exp[B _{25/80} (1/T ₂ - 1/(298.15K))]		3411		К
B _{25/100}	B-value	$R_2=R_{25} \exp[B_{25/100}(1/T_2-1/(298.15K))]$		3433		К


CIRCUIT DIAGRAM

PACKAGE DIMENSION

REVISION HISTORY

Document version	Date of release	Description of changes
Rev.00	2025-05-27	Preliminary Data

ATTENTION

- Any and all Jinlan power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Jinlan Power Semiconductor representative nearest you before using any Jinlan power products described or contained herein in such applications.
- Jinlan Power Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Jinlan power modules described or contained herein.
- Specifications of any and all Jinlan power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- Jinlan Power Semiconductor (Wuxi).co.,LTD. strives to supply high-quality high-reliability products. However,any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all Jinlan power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Jinlan Power Semiconductor (Wuxi).co.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Jinlan Power Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Jinlan power product that you intend to use.
- This catalog provides information as of May.2025. specifications and information herein are subject to change without notice.