

GR2866M

■ 产品简介

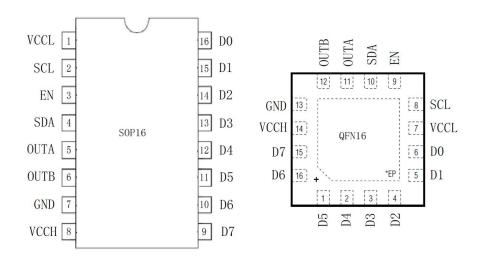
GR2866M 是一款专用步进电机和 IR-Cut Removable 驱动集成电路。兼容 I²C 总线输入,八路并行输出控制驱动步进电机,两路互斥输出驱动 IR-Cut 电机。此串入并出的模式可为方案设计节约 MCU 的输出端口资源,缩减 PCB 布线面积,提高设计效率。GR2866M 可驱动两路四相步进电机,或驱动八路继电器,也可用于 LED 大屏驱动等其它应用。

■ 产品特点

● 最高耐压: 18V

● 输出最大电流: 500MA, Ta=25℃

● 低功耗: 典型值 OuA


● 兼容 5V 和 12V 步进电机

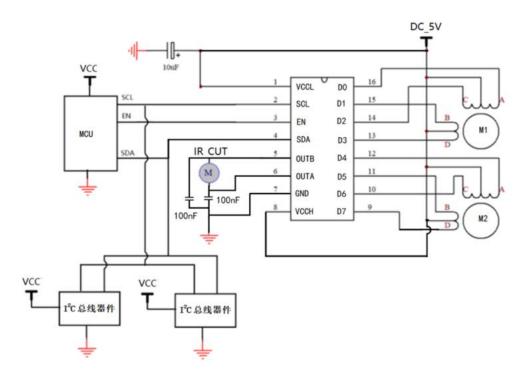
- 兼容 I²C 总线通讯
- 八路并行输出,两路 IR-Cut 互斥输出
- 封装形式: SOP16、QFN16

■ 封装形式和管脚功能定义

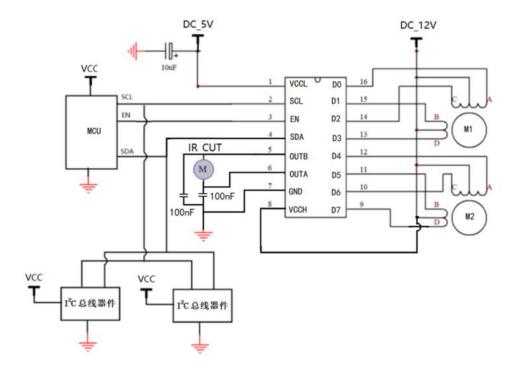
管脚序号		55 Hπ → ₩	管脚功能描述	管脚	序号	55: 叶□ ←→ \ ' J	管脚功能描述		
S0P16	QFN16	管脚定义		S0P16	QFN16	管脚定义			
1	7	VCCL	低压电源	9	15	D7	并行输出 D7 端		
2	8	SCL	数据时钟	10	16	D6	并行输出 D6 端		
3	9	EN	数据输出锁存	11	1	D5	并行输出 D5 端		
4	10	SDA	数据输入	12	2	D4	并行输出 D4 端		
5	11	OUTA	IR-Cut 输出 A	13	3	D3	并行输出 D3 端		
6	12	OUTB	IR-Cut 输出 B	14	4	D2	并行输出 D2 端		
7	13	GND	电源地	15	5	D1	并行输出 D1 端		
8	14	VCCH	高压电源	16	6	DO	并行输出 D0 端		

注: QFN16 的低面散热片(EP)与GND 相连

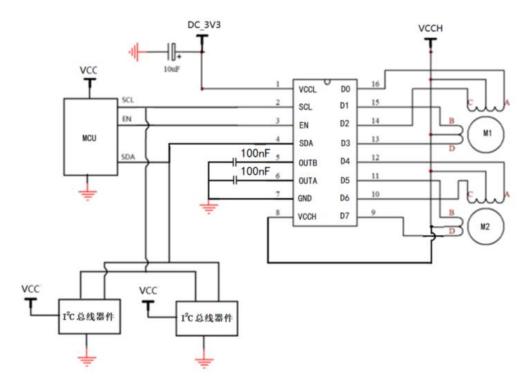
■电学特性


直流电学特性: T_A=25℃

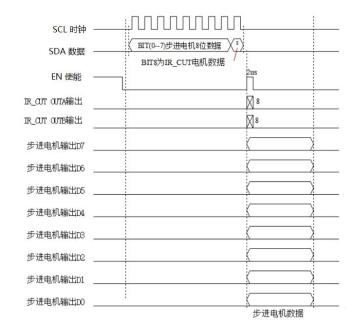
符号	项目	测证	代条件	最小值	典型值	最大值	单位
V _{CCL}	低压电源电压	Ta=	25° C	2.8	-	5. 5	V
T	工作由法	$V_{CCL} = 3.3 \text{ V};$	_	0	15	μА	
I _{VCCL}	工作电流	$V_{CCL} = 5.0 \text{ V};$	Vout 输出全关闭	_	0	15	μА
V_{CCH}	高压电源电压	3	_	18	V		
T.,	立 正工作由法	V - 15V	Ta=25° C	_	0.1	50	μА
Ivcch	高压工作电流	V_{R} = 15V,	Ta=85° C	_	0.1	100	μА
т	DO~D7	V - 15V	Ta=25° C	_	0	50	μА
Іон	输出漏电电流	V _{OUT} = 15V	Ta=85° C	_	0	100	μА
	DO~D7	I _{OUT} =350 mA,	Ta=25° C	_	1.02	1.6	V
V _{OL}	低电平有效	I _{OUT} =200 mA	, Ta=25° C	-	0.96	1.3	V
	输出电压	I _{OUT} =100 mA	, Ta=25° C	_	0.85	1.1	V
V _{OL}	OUTA/OUTB 输出低电压	$V_{CCL} = 5.0 \text{ V}$, I _{OUT} =80 mA	_	0.8	_	V
V _{ОН}	OUTA/OUTB 输出高电压	$V_{CCL} = 5.0 \text{ V}$, I _{OUT} =80 mA	-	3. 4	-	V
${ m I}_{ m IH}$	炒)由次	$V_{CCL} = 5.0 \text{ V}$	$V_{IN} = 5.0 V$	-	0	5	μА
${ m I}_{ m IL}$	输入电流	$V_{CCL} = 5.0 \text{ V}$	$V_{IN} = 0 V$	-	0	5	μА
1/	松》宣山亚	V _{CCL} = 3.3 V	2.0	-	3. 3	V	
V _{IH}	输入高电平 	$V_{CCL} = 5.0 \text{ V}$		2. 2	-	5.0	V
V-	<i>捻</i>) 优由亚	$V_{CCL} = 3.3 \text{ V}$		0	-	1.0	V
V _{IL}	输入低电平	$V_{CCL} = 5.0 \text{ V}$		0	-	1.2	V



■ 典型应用线路


1、5V 步进电机应用线路图

2、12V 步进电机应用线路图


3、3.3V 供电应用线路图

- 注: 1, DC_3V3 供电范围 2.8V~3.5V 可正常工作,要求 VCC 小于等于 DC_3V3;
 - 2, 此电路不能驱动 IR_CUT, OUTA/OUTB(5 脚和 6 脚)要求悬空;
 - 3, 此电路适用于 5V/12V 步进电机, 5V 步进电机 VCCH=5V, 12V 步进电机 VCCH=12V;

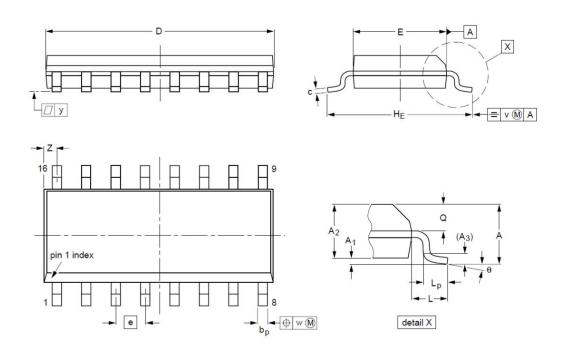
■ 时序图

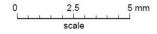
1、步进电机时序

2、IR_CUT 电机时序

3、应用时序说明:

1、IR_CUT 的 OUTA 和 OUTB 输出电平由 DATA 数据的第 8 位数据决定, DATA_BIT8=1, 则 OUTA=1, OUTB=0; DATA_BIT8=0, 则 OUTA=0, OUTB=1。

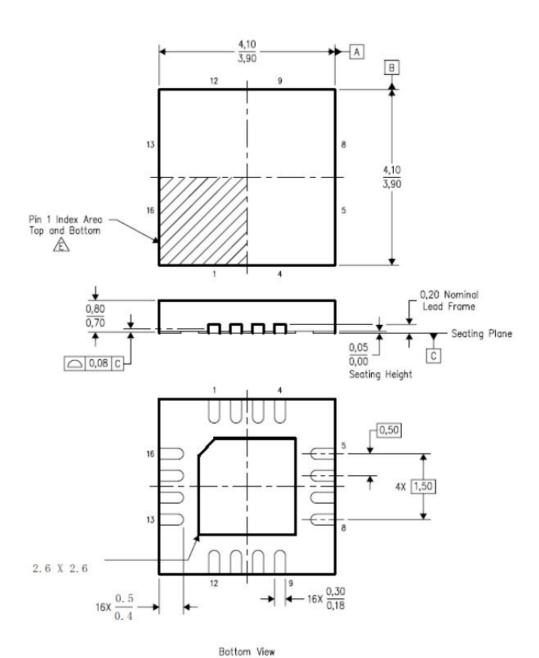

- 2、OUTA 和 OUTB 输出时间由 EN 输入高电平脉宽决定。
- 3、在 IR_CUT 电机切换时,DATA_BIT7-0 进步电机 8 位数据建议设定为 0(步进电机停止运转); EN 输入高电平脉宽一般设置为 50 ms—200 ms。
- 4、在步进电机工作时,DATA_BIT8 的数据应保持原状态不变,同时 EN 输入高电平脉宽建议在 2-10us 内。
- 5、兼容 I^2 C 通讯,在给其他 I^2 C 期间发送数据时,需要让 EN 管脚保持低电平,给 GR2866M 发数据时,每发完一帧数据 (bit0 $^{\sim}$ bit8) 后需要发送一个 EN 时钟(脉宽参考备注 3、4)。


Ver 3.5

■ 封装信息

单位:毫米 / 英寸

S0P16



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004		0.01		0.0100 0.0075		0.16 0.15	0.050	0.244 0.228	0.041		0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

QFN16

