

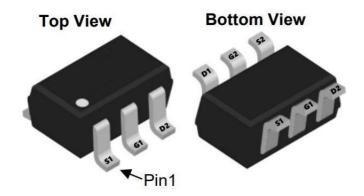
Description

The SX2N7002DW uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 10V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 60V I_{D} = 0.3A$

 $R_{DS(ON)}$ < 2100m Ω @ Vgs=10V


ESD=2KV HBM

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings@T_j=25°C(unless otherwise specified)

Symbol	Parameter	Max.	Units
VDSS	Drain-Source Voltage	60	V
VGSS	Gate-Source Voltage	±20	V
lo@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	0.3	А
lo@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	0.15	А
IDM	Pulsed Drain Current	1	А
P 	Power Dissipation	0.38	W
TJ, TSTG	Operating and Storage Temperature Range	-55 to +150	°C
R₀JA	Thermal Resistance Junction-Ambient ¹	135	°C/W
R₀JC	Thermal Resistance Junction-Case ¹	100	°C/W

Electrical Characteristics (TJ=25℃, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	Vgs=0V, lp= 10µA	60	67	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} =60V, V _{GS} = 0V,	-	-	1	μA
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±10	uA
VGS(th)	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250µA	1.0	1.3	2.5	V
RDS(on)	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =0.3A	-	1600	2100	mΩ
RDS(on)	Static Drain-Source on-Resistance	V _{GS} =4.5V, I _D =0.2A	-	1900	2700	mΩ
Ciss	Input Capacitance		-	28	-	pF
Coss	Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1.0MHz	-	11	-	pF
Crss	Reverse Transfer Capacitance	- 1.0WII 12	-	4	-	pF
Qg	Total Gate Charge	V _{DS} = 10V, I _D = 0.3A, V _{GS} = 4.5V	-	1.7	-	nC
Qgs	Gate-Source Charge		-	0.3	-	nC
Qgd	Gate-Drain("Miller") Charge	VGS – 4.5V	-	0.6	-	nC
td(on)	Turn-on Delay Time		-	2	-	ns
tr	Turn-on Rise Time	$V_{DD} = 10V$, $I_{D} = 0.2A$, $R_{GEN} = 10\Omega$, $V_{GS} = 10V$,	-	15	-	ns
td(off)	Turn-off Delay Time		-	7	-	ns
tf	Turn-off Fall Time		-	20	-	ns
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	0.2	Α
ISM	Maximum Pulsed Drain to Source Di	ode Forward Current	-	-	0.8	Α
VSD	Drain to Source Diode Forward Voltage	V _G s = 0V, I _S =0.2A	-	-	1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3. The power dissipation is limited by 175°C junction temperature
- 4. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Typical Characteristics

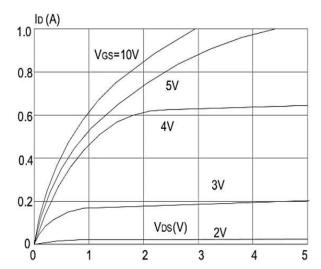


Figure1: Output Characteristics

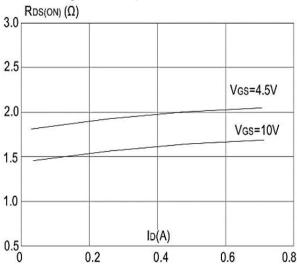
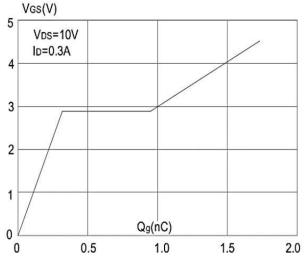



Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

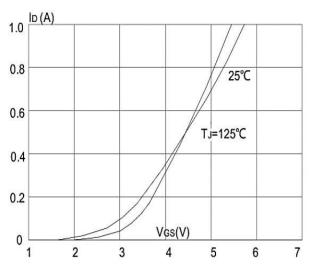


Figure 2: Typical Transfer Characteristics

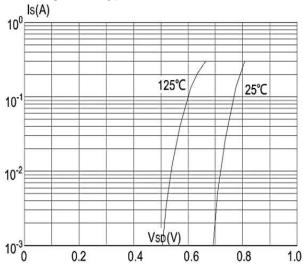


Figure 4: Body Diode Characteristics

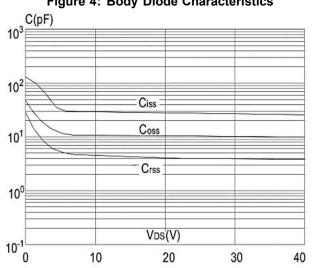


Figure 6: Capacitance Characteristics

Typical Characteristics

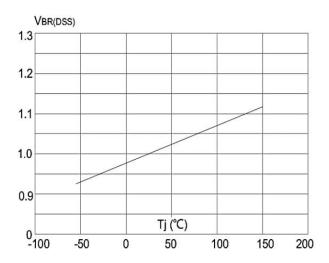


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

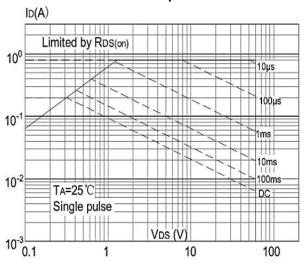


Figure 9: Maximum Safe Operating Area

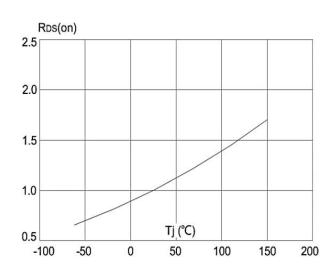


Figure 8: Normalized on Resistance vs.

Junction Temperature

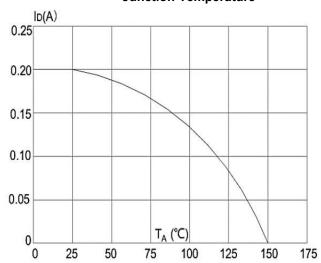


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

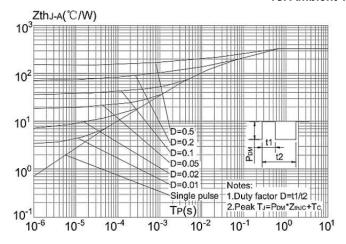
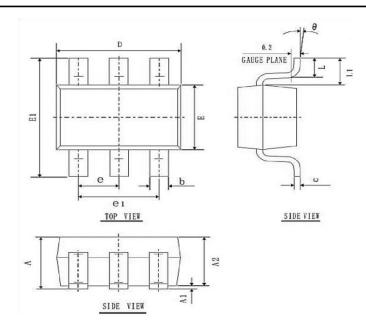



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

Package Mechanical Data-SOT-363-6L

COMMON DIMENSIONS (UNITS OF MEASURE=mm)

SYMBOL	MIN	NOM	MAX
A	0. 90	1.00	1. 10
A 1	0.00	0.05	0.10
A2	0.90	0.95	1.00
ь	0. 20	0.25	0.30
C	0.08	0.10	0. 15
eı	1.20	1.30	1.40
D	2.00	2.10	2.20
E	1.15	1.25	1. 35
E1	2. 15	2. 30	2.45
L	0.26	0. 36	0.46
θ	0 °	4°	8°
L1	0. 525 REF		
e	0. 65 TYP		

Package Marking and Ordering Information

actuage manning and cracering mornianen					
Product ID	Pack	Marking	Qty(PCS)		
TAPING	SOT363-6L		3000		