

Description

The SX10G06S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 60V I_{D} = 12.5A$

 $R_{DS(ON)} < 36m\Omega$ @ $V_{GS}=10V$

 $V_{DS} = -60V I_{D} = -9.7A$

 $R_{DS(ON)} < 70 m\Omega$ @ V_{GS} =-10V

Application

Boost driver

Brushless motor

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

0	B	Ra	ting	Units	
Symbol	Parameter	N-Channel	P-Channel		
VDS	Drain-Source Voltage	60	-60	V	
VGS	Gate-Source Voltage	±20	±20	V	
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V¹	12.5	-9.7	А	
l o@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	5.8	-5	А	
IDM	Pulsed Drain Current ²	37.5	22.5	А	
EAS	Single Pulse Avalanche Energy³	25.5	35.3	mJ	
IAS	Avalanche Current	22.6	-26.6	А	
Pb@Ta=25°C	Total Power Dissipation ⁴	1.5	1.5	W	
TSTG	Storage Temperature Range	-55 to 150	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	$^{\circ}$	

N-Channel Electrical Characteristics (TJ =25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	60	66		V	
∆BVDSS/∆T J	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA		0.063		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=4A		28	36	mΩ	
1120(011)	Ciano Brain Coarso Cir recicianes	Vgs=4.5V , Ip=2A		32	38	11122	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.2	1.6	2.5	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VGS-VDS , ID -230UA		-5.24		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	uA	
الكام	Dialii-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5		
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =4A		21		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		3.2		Ω	
Qg	Total Gate Charge (4.5V)			12.6		nC	
Qgs	Gate-Source Charge	V _{DS} =48V , V _{GS} =4.5V , I _D =4A		3.2			
Qgd	Gate-Drain Charge			6.3			
Td(on)	Turn-On Delay Time			8			
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =3.3 ,		14.2			
Td(off)	Turn-Off Delay Time	b=4A		24.4		ns	
Tf	Fall Time	D-4A		4.6			
Ciss	Input Capacitance			1378			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		86		pF	
Crss	Reverse Transfer Capacitance			64			
IS	Continuous Source Current ^{1,5}			4.8	Α		
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			9.6	Α	
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3 . The power dissipation is limited by $150\,^\circ\!\!\!\mathrm{C}$ junction temperature
- 4. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation

2

www.sxsemi.com

P-Channel Electrical Characteristics (TJ =25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , In=-250uA	-60			V	
∆BVDSS/∆TJ	BVpss Temperature Coefficient	Reference to 25℃, I _D =-1mA		-0.03		V/℃	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=-10V , Ip=-3A		48	70	mΩ	
TOO(ON)	Statio Brain-Godice On-Resistance	Vgs=-4.5V , Ip=-2A		75	85	11152	
VGS(th)	Gate Threshold Voltage	\/aa=\/aa a = 250uA	-1.2	-1.6	-2.5	V	
△VGS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =-250uA		4.56		mV/℃	
IDSS	Drain Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =25℃			1		
IDSS	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =55℃			5	uA	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-3A		15		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		13.5		Ω	
Qg	Total Gate Charge (-4.5V)			9.86		nC	
Qgs	gs Gate-Source Charge	VDS=-48V , VGS=-4.5V , ID=-3A		3.1			
Qgd	Gate-Drain Charge			2.95			
Td(on)	Turn-On Delay Time			28.8			
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V , R _G =3.3 ,		19.8			
Td(off)	Turn-Off Delay Time	b=-1A		60.8		ns	
Tf	Fall Time	D .,,		7.2			
Ciss	Input Capacitance	Vps=-15V , Vgs=0V , f=1MHz		1447			
Coss	Output Capacitance			97.3		pF	
Crss	Reverse Transfer Capacitance			70			
IS	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-3.7	Α	
ISM	Pulsed Source Current ^{2,5}				-7.5	Α	
VSD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1.2	V	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 $\,$ FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 4、 The data is theoretically the same as I D and I DM , in real applications , should be limited by total power dissipation.

3

www.sxsemi.com

N-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.5 Normalized V_{GS(th)} v.s T_J

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON v.s TJ

N-Channel Typical Characteristics

Fig.7 Capacitance

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Waveform

P-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.5 Normalized $V_{\text{GS(th)}}$ v.s T_{J}

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized RDSON v.s TJ

P-Channel Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Waveform

Package Mechanical Data-SOP-8L

C b I	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0. 004	0.010	
A2	1. 350	1. 550	0. 053	0.061	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0. 050 (BSC)	(BSC)	
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	

Package Marking and Ordering Information

r donago marking and ordoring information							
	Product ID	Pack	Marking	Qty(PCS)			
	TAPING	SOP-8L		3000			