

30V N-Channel Enhancement Mode MOSFET

Description

The SX3404BI uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 30V I_{D} = 6.2A$

 $R_{DS(ON)} < 25m\Omega$ @ $V_{GS}=10V$

Application

Lithium battery protection

Wireless impact

Mobile phone fast charging

Absolute Maximum Ratings (Tc=25°Cunless otherwise noted

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	30	V
VGS	Gate-Source Voltage	±20	V
lo@Ta=25℃	Continuous Drain Current	6.2	Α
lo@Ta=70°C	Continuous Drain Current	4.1	Α
IDM	Pulsed Drain Current ²	20	Α
Pd@Ta=25°C	Total Power Dissipation ³	1.25	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$ C
ReJA	Thermal Resistance Junction-ambient ¹	125	°C/W
ReJA	Thermal Resistance Junction-Ambient ¹ (t ≤10s)	85	°C/W

30V N-Channel Enhancement Mode MOSFET

Electrical Characteristics (Tc=25℃unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V(BR)DSS	Drain-Source Breakdown Voltage	lo = 250μA, Vgs = 0V	30	33	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 30V, V _{GS} = 0V	-	-	1.0	μA
IGSS	Gate-Body Leakage Current	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250µA	1.2	1.6	2.5	V
	Static Drain-Source ON-Resistance	V _G S = 10V, I _D = 4A	-	19	25	mΩ
RDS(ON)		V _G S = 4.5V, I _D = 3A	-	27	35	mΩ
Ciss	Input Capacitance		-	388	-	pF
Coss	Output Capacitance	Vgs=0V, Vds=15V, f=1MHz	-	57	-	pF
Crss	Reverse Transfer Capacitance		-	45	-	pF
Qg	Total Gate Charge		-	9	-	nC
Qgs	Gate Source Charge	Vgs=0 to 10V Vps=15V, lp=3A	-	1.5	-	nC
Qgd	Gate Drain("Miller") Charge	D-3A	-	2	-	nC
td(on)	Turn-On DelayTime		-	2	-	ns
tr	Turn-On Rise Time	Vgs=10V, Vdd=15V Id=3A,	-	6	-	ns
td(off)	Turn-Off DelayTime	RGEN = 3Ω	-	61	-	ns
tf	Turn-Off Fall Time		-	34	-	ns
IS	Maximum Continuous Drain to Source Diode Forward Current		-	-	5	Α
ISM	Maximum Pulsed Drain to Source Diode Forward Current		-	-	20	Α
VSD	Drain to Source Diode Forward Voltage	V _G S = 0V, I _S = 5A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time	1 04 17/11 40047	-	6	-	ns
Qrr	Body Diode Reverse Recovery Charge	l⊧ = 3A, di/dt = 100A/us	-	2	-	nC

Note:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\ \le 300 \text{us}$, duty cycle $\ \le 2\%$
- $3\,{}^{\backprime}$ The power dissipation is limited by $150\,{}^\circ\!\mathrm{C}\textsc{junction}$ temperature
- $4\ { imes}$ The data is theoretically the same as $10\ \text{and}\ \text{I}_{\text{DM}}$, in real applications , should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Figure 1: Output Characteristics

Figure 2: Typical Transfer Characteristics

Figure 3: On-resistance vs. Drain Current

Figure 4: Body Diode Characteristics

Figure 5: Gate Charge Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown voltage vs.

Figure 8: Normalized on Resistance vs.

Figure 9: Maximum Safe Operating Area

Figure 10: Maximum Continuous Drian Current

Figure 11: Normalized Maximum Transient

Thermal Impedance

Figure 12: Peak Current Capacity

Package Mechanical Data-SOT23-XC-Single

Cumbal	Dimensions in Millimeters		
Symbol	MIN.	MAX.	
Α	0.900	1.150	
A1	0.000	0.100	
A2	0.900	1.050	
b	0.300	0.500	
С	0.080	0.150	
D	2.800	3.000	
Е	1.200	1.400	
E1	2.250	2.550	
е	0.950TYP		
e1	1.800	2.000	
L	0.550REF		
L1	0.300	0.500	
θ	0°	8°	

Package Marking and Ordering Information

ackage marking and ordering information						
Product ID	Pack	Marking	Qty(PCS)			
TAPING	SOT23		3000			

5