

-30V P-Channel Enhancement Mode MOSFET

Description

The SX4409A uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = -30V I_{D} = 14A$

 $R_{DS(ON)}$ < 8.7m Ω @ Vgs=10V

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25°C unless otherwise noted)

Symbol	Parameter	Rating	Units	
Vps	Drain-Source Voltage	-30	V	
Vgs	Gate-Source Voltage	±20	V	
lo@Ta=25℃	Continuous Drain Current, V _{GS} @ -10V ¹	-14	А	
Io@Ta=70°C	Continuous Drain Current, V _{GS} @ -10V ¹	-11	А	
Ірм	Pulsed Drain Current ²	-56	А	
EAS	Single Pulse Avalanche Energy ³	151	mJ	
las	Avalanche Current	-55	А	
Pb@Ta=25°C	Total Power Dissipation ⁴	1.5	W	
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	
_	Thermal Resistance Junction-Ambient ¹(t≤10s)	40	°C/W	
Reja	Thermal Resistance Junction-Ambient ¹	75	°C/W	
Rejc	Thermal Resistance Junction-Case ¹	24	°C/W	

-30V P-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=-250uA	-30			V
△BVpss/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25℃, I _D =-1mA		-0.018		V/°C
		Vgs=-10V , Ip=-12A			8.7	
RDS(ON)	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-10A			13.5	mΩ
$V_{GS(th)}$	Gate Threshold Voltage		-1.2		-2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =-250uA		5.04		mV/℃
	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C	1			
loss		V _{DS} =-24V , V _{GS} =0V , T _J =55℃			-5	- uA
lgss	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	Vps=-5V , Ip=-12A		25		S
Qg	Total Gate Charge (-4.5V)			30		nC
Qgs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V , I _D =-12A		10		
Qgd	Gate-Drain Charge			10.4		
T _{d(on)}	Turn-On Delay Time			9.4		
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V ,		10.2		ns
T _{d(off)}	Turn-Off Delay Time	Rg=3.3 ,		117		
Tf	Fall Time	b=-1A		24		
Ciss	Input Capacitance			3448		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		508		pF
Crss	Reverse Transfer Capacitance			421		
ls	Continuous Source Current ^{1,5}				-14	Α
lsм	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			-56	Α
VsD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1.2	V
trr	Reverse Recovery Time	I=10A , dI/dt=100A/μs ,		19.4		nS
Qrr	Reverse Recovery Charge			9.1		nC

Note:

www.sxsemi.com

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

-30V P-Channel Enhancement Mode MOSFET

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

SXSEMI

Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data-SOP-8

C	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

Recommended Minimum Pads

5

Package Marking and Ordering Information

actuage marking and cracing members					
Product ID	Pack	Marking	Qty(PCS)		
TAPING	SOP-8		3000		