

General Description

This single 2-input positive- NOR gate is designed for 1.65-V to 5.5-V Vcc operation.

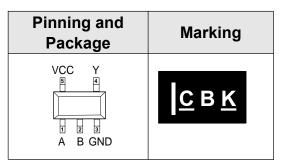
The SN74LVC1G02 performs the Boolean function. Y=A + B $\overline{\text{or Y}}$ =A × B $\overline{\text{.in positive logic.}}$ The CMOS device has

high output drive while maintaining low static power dissipation over a broad Vcc operating range.

This device is fully specified for partial-power-down applications using loff. The loff circuitry prevents daamaging current backflow through the device when the gate is

Features

- Operate from 1.65 V to 5.5 V
- Supports 5-V VCC operation
- Specified from -20°C to 85°
- Provides down translation to Vcc
- Max tpd of 4 ns at 3.3 V
- ±24-mA output drive at 3.3 V


Applications

- Personal digital assistant devices
- AV receiver
- MP3 player/recorder
- Solid state drive (SSD): client and enterprise
- Power: telecom/server AC/DC supply
- TV: LCD/digital and high-definition (HDTV)

Reference News

Pinning and Package	Marking
VCC Y 5 4 1 2 3 A B GND	<u>C</u> 0 <u>2</u> J

SOT23-5

SC70-5

Pin Functions

Pin		T	Description	
Name	SOT23-5/SC70-5	Туре	Description	
А	1	I	Data Input	
В	2	I	Data Input	
GND	3	-	Ground	
Y	4	0	Data Output	
Vcc	5	<u>-</u>	Supply Voltage	

Order information

Orderable Device	Package	Packing Option
SN74LVC1G02DBVR	SOT23-5	3000PCS
SN74LVC1G02DCKR	SC70-5	3000PCS

Absolute Maximum Ratings

	Parameters		Min	Max.	Unit
Vcc	Supply voltage r	ange	-0.5	6.5	V
Vı	Input voltage ra	inge	-0.5	6.5	٧
Vo	Voltage range applied to any output in the hi	gh-impedance or power-off state	-0.5	6.5	V
Vo	Voltage range applied to any outpu	-0.5	Vcc+0.5	V	
lık	Input clamp current	V ₁ <0		-50	mA
Юк	Output clamp current	Vo<0		-50	mA
lo	Continuous output	current		±50	mA
	Continuous current through Vo	c or GND		±100	mA
TJ	Junction temperature		85	°C	
T _{stg}	Storage temperatur	re range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Functional Block Diagram

ESD Ratings

	ESD	Value	Unit	
V(ESD)	Electrostatic Discharge	Human-Body Model (HBM) ⁽¹⁾	8 K	V
		Charged-Device Model (CDM)(2)	1.5K	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	Package Type 6JA		Unit
SOT23-5	250	81	°C/W
SC70-5	400	150	°C/W

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Para	ameter	Min	Max	Units	
Vcc	Supply Voltage	Operating	1.65	5.5	V	
		V _{CC} =1.65V to 1.95V	0.65×Vcc			
.,		V _{CC} =2.3V to 2.7V	1.7			
ViH	High-Level Input Voltage	V _{CC} =3V to 3.6V	2		V	
		V _{CC} =4.5V to 5.5V	0.7×Vcc			
		V _{CC} =1.65V to 1.95V		0.35×Vcc		
.,		V _{CC} =2.3V to 2.7V		0.7		
VIL	Low-Level Input Voltage	V _{CC} =3V to 3.6V		0.8	V	
		V _{CC} =4.5V to 5.5V		0.3×Vcc		
Vı	Inpu	t Voltage	0	5.5	V	
Vo	Outp	ut Voltage	0	Vcc	V	
	High-Level Output Current	V _{CC} =1.65V		-4		
		Vcc=2.3V		-8	mA	
І он		Vcc=3V		-16		
		VCC-3V		-24		
		Vcc=4.5V		-32		
		V _{CC} =1.65V		4		
		Vcc=2.3V		8		
lol	Low-Level Output Current	Vcc=3V		16	mA	
		VCC-3V		24		
		Vcc=4.5V		32		
		V _{CC} =1.8V±0.15V, 2.5V±0.2V		20		
$\Delta t/\Delta v$	Input Transition Rise or Fall Rate	Vcc=3.3V±0.3V		10	ns/V	
		V _{CC} =5V±0.5V		5		
TA	Operating Free-air Temperature	All Other Packages	-40	125	°C	

⁽¹⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Electrical Characteristics

 V_{CC} =1.65V to 5.5V, FULL=-20°C to +85°C. Typical values are at TA=+25°C (unless otherwise noted)

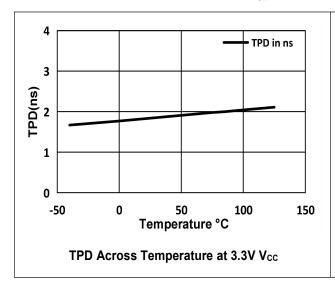
Parameter	Symbol	Test Conditions	V cc	TA	Min	Тур	Max	Units
		Output						
		l _{OH} =100μA	1.65V to 5.5V	FULL	Vcc-0.1			V
		loн=4mA	1.65V	FULL	1.2			V
Output High Voltage	Vон	loн=8mA	2.3V	FULL	1.9			V
o apat i ngi i tonago	Voii	I _{OH} =16mA	2)./	FULL	2.4			V
		I _{OH} =-24mA	3V	FULL	2.3			V
		l _{он} =–32mA	4.5V	FULL	3.8			V
		l _{oL} =100μA	1.65V to 5.5V	FULL			0.1	V
	Vol	lo _L =4mA	1.65V	FULL			0.45	V
Output Low Voltage		loL=8mA	2.3V	FULL			0.3	V
o apar zem remage		I _{OL} =16mA	3V	FULL			0.4	V
		l _{OL} =24mA	3v	FULL			0.55	V
		l _{oL} =32mA	4.5V	FULL			0.55	V
Off-State Current	loff	V _I or V _O =5.5V	0V	FULL			±10	μA
		Input						
Input Leakage Current	lı .	V _i =5.5V or GND	0V to 5.5V	FULL			±5	μA
Input Capacitance	G	V=Vcc or GND	3.3V	FULL		4		pF
		Power Supply						
Power Supply Range	Vcc		1.65V to 5.5V	FULL	1.65		5.5	V
Power Supply Current	lcc	V_I = V_{CC} or GND, I_O =0	5.5V	FULL			10	μA
Delta Power Current	ΔΙα	One Input at $V_{CC} - 0.6V$, Other Inputs at V_{CC} or GND	3V to 5.5V	FULL			500	μΑ

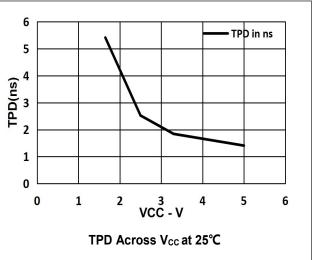
⁽¹⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

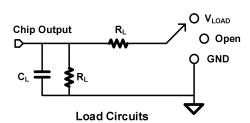
Switching CharacteristicsOver recommended operating free-air temperature range,C_L=30pF or 50 pF (unless otherwise noted)

					-	20°C to +8	5°C				
Parameter	From(Input)	To(Output)	Vcc=1.8V±0.15V		V _{CC} =1.8V±0.15V V _{CC} =2.5V±0.2V		V _{CC} =3.3V±0.3V		V _{CC} =5V±0.5V		Units
			Min	Max	Min	Max	Min	Max	Min	Max	
t pd	A or B	Y	1	9	1	3.8	1	4	1	3.3	ns

Operating Characteristics


TA=- 20°C to +85°C

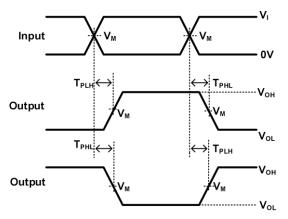

	Parameter		Test Conditions	Vcc=1.8V	Vcc=2.5V	Vcc=3.3V	Vcc=5V	Units
				Тур	Тур	Тур	Тур	
(Cpd	Power Dissipation Capacitance	f=10Mhz	23	23	23	31	pF


Typical Characteristics

V_{CC}=1.65V or 5.5V, FULL=-20°C to +85°C. Typical values are at TA=+25°C (unless otherwise noted)

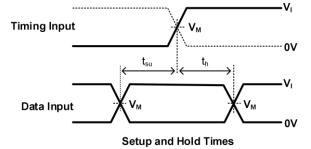
Parameter Measurement Information

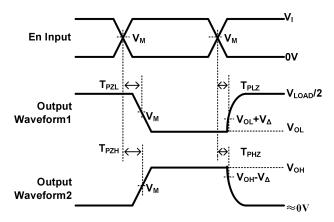
TEST	S1
TPHL/TPLH	OPEN
TPLZ/TPZL	VLOAD
Трнz/Трzн	GND


	INPUTS							
Vcc	Vı	T _f /T _f	Vм	VLOAD	C∟	R∟	V۵	
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2×Vcc	30pF	500Ω	0.15V	
2.5V±0.15V	Vcc	≤2ns	Vcc/2	2×Vcc	30pF	500Ω	0.15V	
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	30pF	500Ω	0.3V	
5V±0.15V	Vcc	≤2.5ns	Vcc/2	2×Vcc	30pF	500Ω	0.3V	

SN74LVC1G02

Parameter Measurement Information(Continued)


Propagation Delay for Output and Inverted Output


Notes:A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the F. t_{PZL} and t_{PZH} are the same as t_{en} output is high, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.

Enable and Disable Times Low-And High-Level Enabling

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- G. t_{PLH} and t_{PHL} are the same as $t_{\text{pd.}}$
- H. All parameters and waveforms are not applicable to all device.

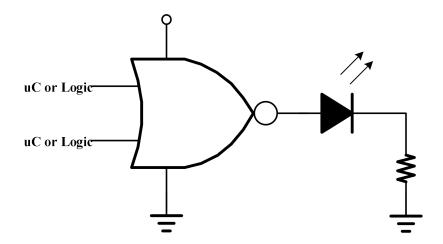
Detailed Descript

ion Overview

The SN74LVC1G02 device contains one 2 -input positive - NOR gate device and performs the Boolean function $Y = \overline{A + B}$ or $Y = \overline{A} \times \overline{B}$. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current back flow through the device when it is powered down. The loff feature allows voltages on the inputs and outputs, when Vcc is 0 V.

Functional Block Diagram

Feature Description

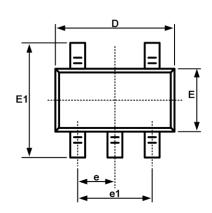

- Wide operating voltage range.
- Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- loff feature allows voltages on the inputs and outputs, when Vcc is 0 V.

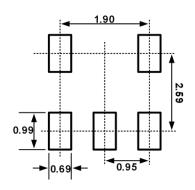
Device Functional Modes

Inputs		Output	
Α	В	Υ	
Н	X	L	
X	Н	L	
L	L	Н	

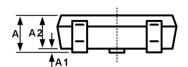
Application Note

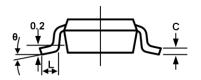
The SN74LVC1G02 is a high drive CMOS device that can be used for implement NOR logic with a high output drive, such as an LED application. It can produce 24-mA of drive current at 3.3V making it Ideal for driving multiple outputs and good for high speed applications up to 100Mhz. The inputs are 5.5-V tolerant allowing translation down to Vcc


Basic LED Driver

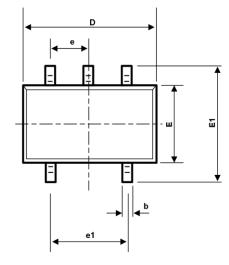

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

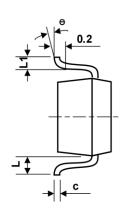
Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1-μF capacitor is recommended. If there are multiple VCC pins, then a 0.01-μF or 0.022-μF capacitor is recommended for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

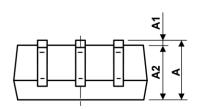



Package Outline SOT23-5

Recommended Land Pattern (Unit: mm)






Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950BSC		0.037BSC	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0.600REF		0.024REF	
θ	0°	8°	0°	8°

Package Outline SC70-5

symbol	Dimension In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650TYP		0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.021REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°