

40V N+P-Channel Enhancement Mode MOSFET

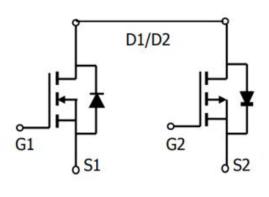
Description

The SX20G04GD uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 40V I_{D} = 20A$

 $R_{DS(ON)} < 32m\Omega$ @ $V_{GS}=10V$


 $V_{DS} = -40V I_{D} = -18A$

 $R_{DS(ON)}$ <48m Ω @ Vgs= -10V

Application

Boost driver

Brushless motor

Absolute Maximum Ratings (T_c=25°C unless otherwise noted)

O		Rat	11.74		
Symbol	Parameter	N-Ch	P-Ch	Units	
V _D s	Drain-Source Voltage	40	-40	V	
Vgs	Gate-Source Voltage	±20	±20	V	
lo@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V¹	20	-18	А	
l b@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V ¹	15	-16	А	
Ірм	Pulsed Drain Current ²	35	-36	А	
EAS	Single Pulse Avalanche Energy ³	15	45	mJ	
las	Avalanche Current	10	-10	А	
Pb@Tc=25°C	Total Power Dissipation ⁴	20	25	W	
Тѕтс	Storage Temperature Range	-55 to 150	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C	
Rеja	Thermal Resistance Junction-Ambient ¹	62		°C/W	
Rелс	Thermal Resistance Junction-Case ¹	5		°C/W	

Electrical Characteristics (Tc=25℃unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40	44		V
∆BVDSS/∆TJ	BVDSS Temperature Coefficient	Reference to 25℃, l _D =1mA		0.032		V/°C
RDS(ON) Static Drain-Source On-R	Static Drain-Source On-Resistance ²	VGS=10V , ID=4A		24	32	mΩ
		V _G s=4.5V , I _D =3A	38		48	11132
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.0	1.5	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	V65-V65 , 16 -2004A		-4.5		mV/℃
IDSS	Drain-Source Leakage Current	V _{DS} =32V , V _{GS} =0V , T _J =25℃			1	uA
1500	Brain-oodroc Leakage Ourient	V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	uA
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =4A		8		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.4	4.8	Ω
Qg	Total Gate Charge (4.5V)			5		
Qgs	Gate-Source Charge	VDS=15V , VGS=4.5V , ID=3A		1.54		nC
Qgd	Gate-Drain Charge			1.84		
Td(on)	Turn-On Delay Time			7.8		
Tr	Rise Time	VDD=15V , VGS=10V , RG=3.3		2.1		
Td(off)	Turn-Off Delay Time	lo=1A		29		ns
Tf	Fall Time			2.1		
Ciss	Input Capacitance			452		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		51		pF
Crss	Reverse Transfer Capacitance			38		
IS	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			4.5	Α
ISM	Pulsed Source Current ^{2,4}				14	Α
VSD	Diode Forward Voltage ²	Vgs=0V,Is=1A,Tյ=25℃			1.2	V
	1					

Note:

- 1 The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- $3\sqrt{100}$ The EAS data shows Max. rating . The test condition is $V_{DD}=25V$, $V_{GS}=10V$, L=0.1mH, $L_{AS}=10A$
- $4\,{\scriptstyle \, {}_{\wedge} }$ The power dissipation is limited by $150\,{}^{\circ}{\rm C}{}_{\mbox{junction}}$ temperature
- 5 . The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

40V N+P-Channel Enhancement Mode MOSFET

Electrical Characteristics (Tc=25 ℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , In=-250uA	-40			V
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25℃, I _D =-1mA		-0.02		V/°C
DDC(ON)	Static Drain-Source On-Resistance ²	Vgs=-10V , Ip=-5A		42	48	mΩ
RDS(ON)		Vgs=-4.5V , Ip=-3A		48	60	
VGS(th)	Gate Threshold Voltage	\/\/	-1.0	-1.6	-2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , ld =-250uA		3.72		mV/℃
IDCC	Dunin Course Legisone Current	V _{DS} =-32V , V _{GS} =0V , T _J =25°C			1	^
IDSS	Drain-Source Leakage Current	V _{DS} =-32V , V _{GS} =0V , T _J =55°C			5	uA
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
Qg	Total Gate Charge (-4.5V)			15.8		
Qgs	Gate-Source Charge	V _{DS} =-20V , V _{GS} =-4.5V , I _D =-6A		3.5		nC
Qgd	Gate-Drain Charge			3.2		
Td(on)	Turn-On Delay Time			5.2		
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V , R _G =3.3Ω,		7		
Td(off)	Turn-Off Delay Time	lo=-1A		23		ns
Tf	Fall Time			8		
Ciss	Input Capacitance			1000		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		160		pF
Crss	Reverse Transfer Capacitance			100		
ls	Continuous Source Current ^{1,5}	Vg=VD=0V , Force Current			-5.7	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2_{\times} The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$
- 3. The EAS data shows Max. rating . The test condition is VDD=-25V,VGS=-10V,L=0.1mH,IAS=-15A
- $4 {\,{}^{^{}}_{^{}}}$ The power dissipation is limited by $150 {\,{}^{^{}}\!\!}{}^{^{^{}}}$ junction temperature
- 5 . The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

3

www.sxsemi.com

N-Typical Characteristics

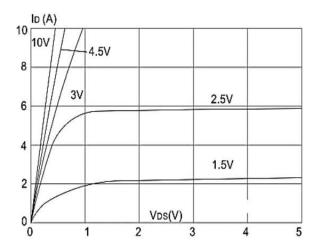


Figure1: Output Characteristics

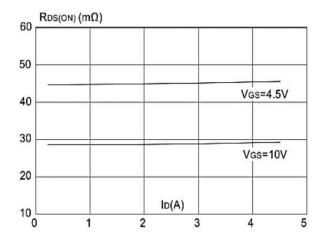
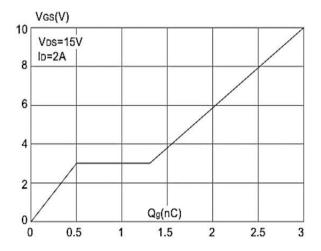
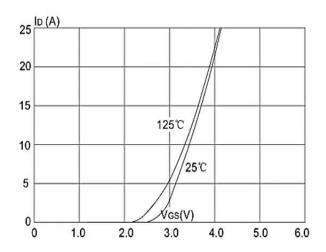
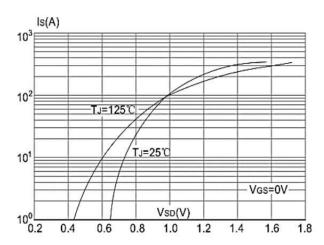


Figure 3:On-resistance vs. Drain Current

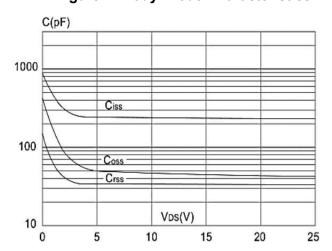

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

N-Typical Characteristics

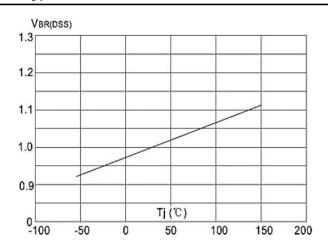


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

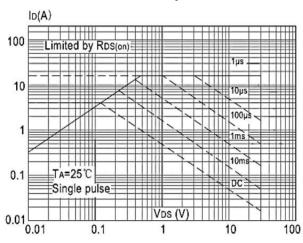


Figure 9: Maximum Safe Operating Area vs. Case Temperature

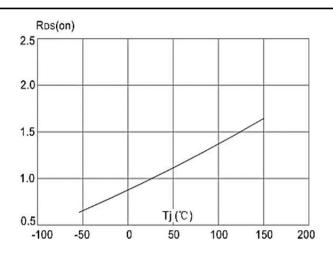
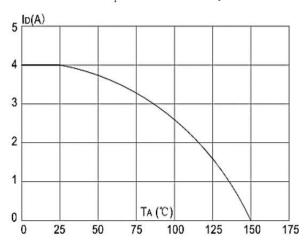
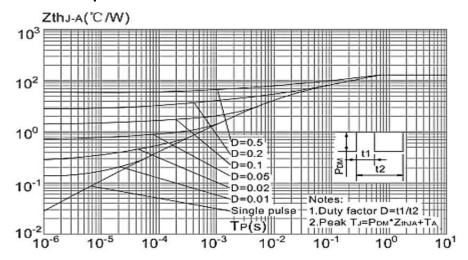
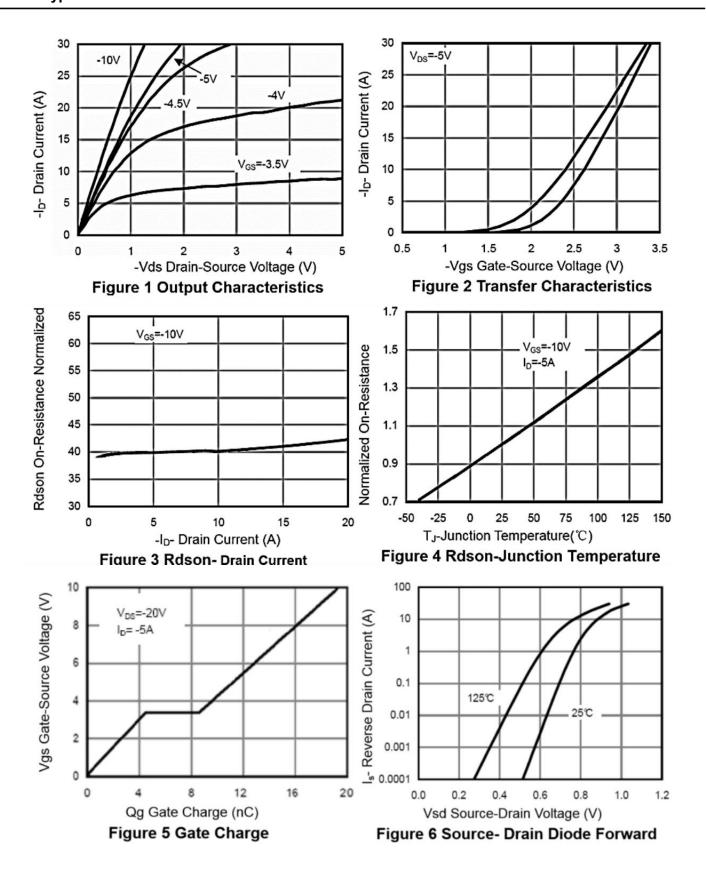



Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current




Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

5

www.sxsemi.com

P-Typical Characteristics

P-Typical Characteristics

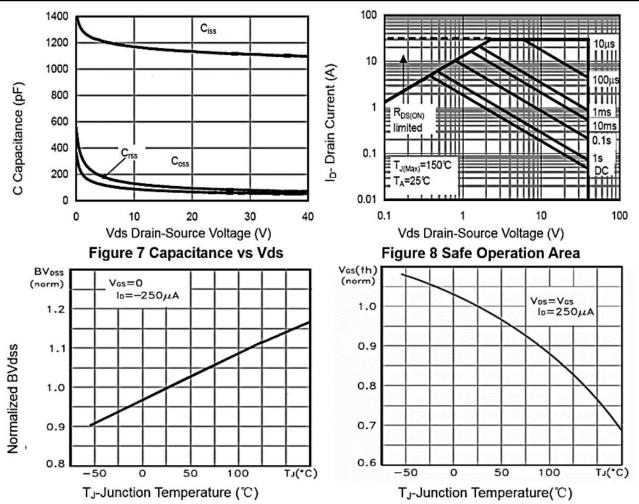
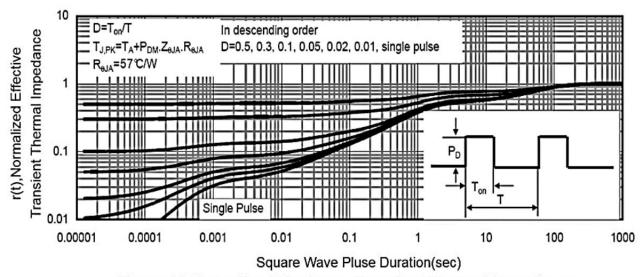
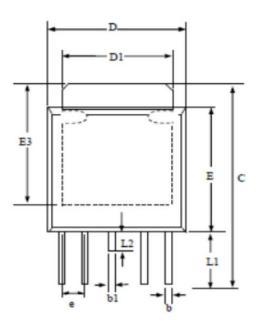
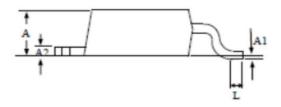


Figure 9 BV_{DSS} vs Junction Temperature Figure 10 V_{GS(th)} vs Junction Temperature


Figure 11 Normalized Maximum Transient Thermal Impedance

Package Mechanical Data:TO-252-4L

SYMBOLS	Millimeters				
	MIN	NOM	MAX		
D	6.30	6.55	6.80		
D1	4.80	5.35	5.90		
C	9.30	9.75	10.20		
E	5.30	5.80	6.30		
E3	4.50	5.15	5.80		
L	0.90	1.35	1.80		
Ll	2.00	2.53	3.05		
L2	0.50	0.85	1.20		
b	0.30	0.50	0.70		
bl	0.40	0.60	0.80		
A	2.10	2.30	2.50		
A2	0.40	0.53	0.65		
Al	0.00	0.10	0.20		
e	1.20	1.30	1.40		

- 1.All Dimensions Are in Millimeters.
- 2. Dimension Does Not Include Mold Protrusions.

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	TO-252-4L		2500