

100V N+N-Channel Enhancement Mode MOSFET

Description

The SX8H10S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

VDS = 100V ID =8.3A

 $R_{DS(ON)}$ < 120m Ω @ Vgs=10V

Application

Lithium battery protection

Wireless impact

Mobile phone fast charging

SOP-8

Absolute Maximum Ratings (TC=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
VDS	Drain-Source Voltage	100	V	
VGS	Gate-Source Voltage	±20	V	
l₀@Tc=25°C	Drain Current, V _{GS} @ 10V	8.3	А	
l₀@Tc=100°C	Drain Current, V _{GS} @ 10V	6.5	A A	
IDM	Pulsed Drain Current ¹	24.3		
P _D @T _C =25°C	Total Power Dissipation	1.5	W	
EAS	Single Pulse Avalanche Energy ⁴	6.1	mJ	
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$	
RθJA	Maximum Thermal Resistance, Junctionambient	85	°C/W	
RθJC	Maximum Thermal Resistance, Junction-case	8.1	°C/W	

Electrical Characteristics@Tj=25°C(unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	VGS=0V, ID=250µA	100	107	-	V
IDSS	Zero Gate Voltage Drain Current	VDS=100V, VGS=0V,	_	_	1.0	μA
IGSS	Gate to Body Leakage Current	VDS=0V, VGS=±20V	_	_	±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID=250µA	1.0	1.6	2.5	V
, ,	<u> </u>	VGS=10V, ID=10A	+ -	100	120	mΩ
RDS(on)	Static Drain-Source on-Resistance note3	vGS=4.5V, ID=8A	_	115	135	mΩ
Ciss	Input Capacitance	·	_	610	-	pF
Coss	Output Capacitance	VDS=25V, VGS=0V, f=1.0MHz	_	40	_	pF
Crss	Reverse Transfer Capacitance	1-1.0IVII 12	_	25	-	pF
Qg	Total Gate Charge	VDS=30V, ID=10A, VGS=10V	-	12	-	nC
Qgs	Gate-Source Charge		-	2.2	-	nC
Qgd	Gate-Drain("Miller") Charge		-	2.5	-	nC
td(on)	Turn-on Delay Time		-	7	-	ns
tr	Turn-on Rise Time	VDS=30V, ID=5A,	-	5	-	ns
td(off)	Turn-off Delay Time	RG=1.8Ω, VGS=10V	-	16	-	ns
tf	Turn-off Fall Time			6	-	ns
IS	Continuous Source Current1,5	VG=VD=0V , Force	-	-	10	Α
ISM	Pulsed Source Current2,5	Current		-	40	Α
VSD	Diode Forward Voltage2	VGS=0V, IS=10A	-	-	1.2	V
trr	Body Diode Reverse Recovery Time		-	21	-	ns
Qrr	Body Diode Reverse Recovery Charge	IF=10A, dI/dt=100A/μs	-	21	-	nC

Notes:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3 The EAS data shows Max. rating . The test condition is VDD =80V,VGS =10V,L=0.1mH,IAS =3A
- 4 . The power dissipation is limited by 150 ℃ junction temperature
- 5. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation

www.sxsemi.com

Typical Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

Figure 7: Normalized Breakdown Voltage vs Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure 8: Normalized on Resistance vs.

Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

Package Mechanical Data-SOP-8

Ch - 1	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0. 010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads-

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000