

60V N-Channel Enhancement Mode MOSFET

Description

The SX10N06S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 60V I_D =10A

 $R_{DS(ON)}$ <40m Ω @ Vgs=10V

Application

LED lamp

Load switch

Uninterruptible power supply

Absolute Maximum Ratings@Tj=25°C(unless otherwise specified)

Symbol	Parameter	Max.	Units
VDSS	Drain-Source Voltage	60	
VGSS	Gate-Source Voltage	Gate-Source Voltage ±20	
l b@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	uous Drain Current, V _{GS} @ 10V ¹ 10	
l b@Tc=70°C	Continuous Drain Current, V _{GS} @ 10V¹	6.8	Α
IDM	Pulsed Drain Current	20	Α
EAS	Single Pulsed Avalanche Energy	25.5	mJ
P o@Tc=25 °C	Power Dissipation	1.5	W
TJ, TSTG	Operating and Storage Temperature Range	-55 to +175	°C
R₀JA	Thermal Resistance Junction-Ambient ¹	85	°C/W
R₀JC	Thermal Resistance Junction-Case ¹	36	°C/W

Electrical Characteristics (T」=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	V _G s=0V , I _D =250uA	60	65		V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.044		V/°C	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , ID=15A		28	40	mΩ	
, ,	Statio Brain-Source On-Resistance	Vgs=4.5V , lp=7A		38	45	mΩ	
VGS(th)	Gate Threshold Voltage	\/\/-	1.2	1.6	2.5	V	
△VGS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =250uA		-4.8		mV/℃	
IDSS	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =25℃			1		
		V _{DS} =48V , V _{GS} =0V , T _J =55°C			5	uA	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vds=0V			±100	nA	
gfs	Forward Transconductance	V _D s=5V , I _D =15A		25.3		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2.5		Ω	
Qg	Total Gate Charge (10V)			19			
Qgs	Gate-Source Charge	V _{DS} =48V , V _{GS} =10V , I _D =15A		2.5		nC	
Qgd	Gate-Drain Charge			5			
Td(on)	Turn-On Delay Time			2.8			
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V ,		16.6		ns	
Td(off)	Turn-Off Delay Time	R _G =3.3Ω, I _D =15A		21.2			
Tf	Fall Time			5.6			
Ciss	Input Capacitance			1027			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		65		pF	
Crss	Reverse Transfer Capacitance			46			
ls	Continuous Source Current ^{1,6}	\/\/0\/			20	Α	
ISM	Pulsed Source Current ^{2,6}	V _G =V _D =0V , Force Current			40	Α	
VSD	Diode Forward Voltage ²	Vgs=0V,Is=1A,Tյ=25℃			1.2	V	
trr	Reverse Recovery Time	IF=15A , dI/dt=100A/μs ,		12.2		nS	
Qrr	Reverse Recovery Charge	TJ=25℃		7.3		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- $3 {\ \ }^{\scriptscriptstyle \searrow}$ The power dissipation is limited by $175 {\ \ \ }^{\scriptscriptstyle \square}$ junction temperature
- 4. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data-SOP-8

Cl 1	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0.020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000

5