

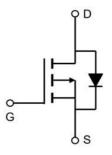
-30V P-Channel Enhancement Mode MOSFET

Description

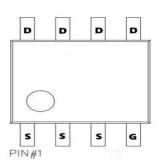
The SX10P03S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = -30V$ $I_{D} = -10A$


 $R_{DS(ON)} < 20m\Omega$ @ $V_{GS}=10V$

Application


Lithium battery protection

Wireless impact

Mobile phone fast charging

Absolute Maximum Ratings (Tc=25°Cunless otherwise noted)

Symbol	Parameter Rating		Units
VDS	Drain-Source Voltage	-30	V
VGS	Gate-Source Voltage	±20	V
ID@TC=25℃	Continuous Drain Current, VGS @ -10V1	-10	А
ID@TC=100°C	Continuous Drain Current, VGS @ -10V1	-7.8	А
IDM	Pulsed Drain Current2	-30	А
EAS	Single Pulse Avalanche Energy3	125	mJ
PD@TC=25℃	Total Power Dissipation4	29	W
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
R0JA	Thermal Resistance Junction-Ambient 1	85	°C/W
RθJC	Thermal Resistance Junction-Case1	3.6	°C/W

-30V P-Channel Enhancement Mode MOSFET

Electrical Characteristics (T_J=25[°]C, unless otherwise noted)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	V _G s=0V, I _D = -250μA	-30	-33	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} =0V,	-	-	-1	μA
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS, ID= -250µA	-1.2	-1.5	-2.5	V
RDS(on)	Static Drain-Source on-Resistance note3	Vgs= -10V, ID= -10A	-	15	20	mΩ
		Vgs= -4.5V, Ip= -5A	-	23	30	
Ciss	Input Capacitance		-	1250	-	pF
Coss	Output Capacitance	V _{DS} = -15V, V _{GS} =0V, f=1.0MHz	-	327	-	pF
Crss	Reverse Transfer Capacitance		-	278	-	pF
Qg	Total Gate Charge		-	30	-	nC
Qgs	Gate-Source Charge	V _{DS} = -15V, I _D = -9.1A, V _{GS} = -10V	-	5.3	-	nC
Qgd	Gate-Drain("Miller") Charge	VG310V	-	7.6	-	nC
td(on)	Turn-on Delay Time		-	14	-	ns
tr	Turn-on Rise Time	V _{DD} = -15V, I _D = -6A,	-	20	-	ns
td(off)	Turn-off Delay Time	Vgs= -10V, Rgen=2.5Ω	-	95	-	ns
tf	Turn-off Fall Time		-	65	-	ns
IS	Maximum Continuous Drain to Source Dioc	imum Continuous Drain to Source Diode Forward Current		-	-10	Α
ISM	Maximum Pulsed Drain to Source Did	Source Diode Forward Current		-	-40	Α
VSD	Drain to Source Diode Forward Voltage	Vgs=0V, Is= -11A	_	-0.8	-1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width ≤ 300 us , duty cycle $\leq 2\%$
- 3 The EAS data shows Max. rating . The test condition is VDD=-25V,VGS=-10V,L=0.1mH,IAS=-23A
- 4 . The power dissipation is limited by 150 ℃ junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

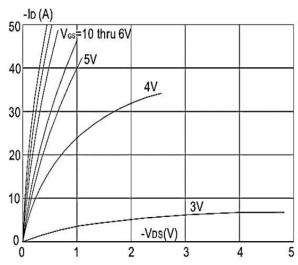


Figure1: Output Characteristics

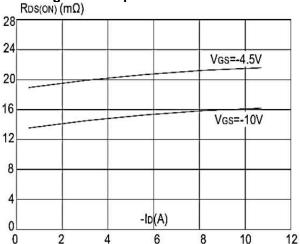


Figure 3:On-resistance vs. Drain Current

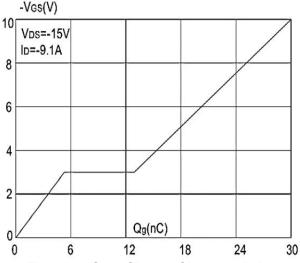


Figure 5: Gate Charge Characteristics

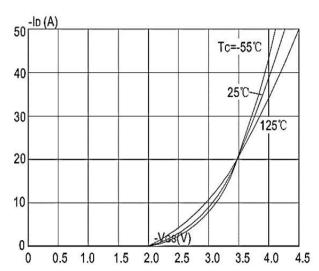


Figure 2: Typical Transfer Characteristics

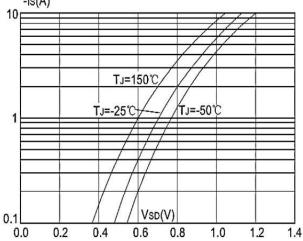
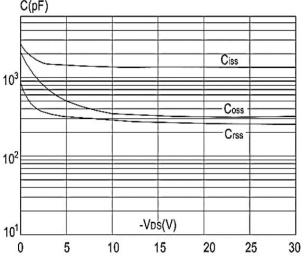



Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

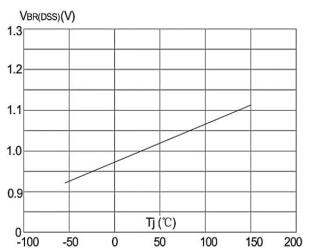


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

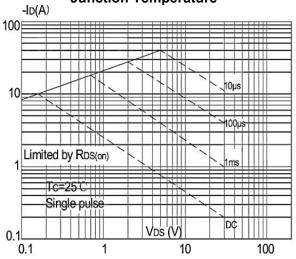


Figure 9: Maximum Safe Operating Area



Figure 8: Normalized on Resistance vs. Junction Temperature

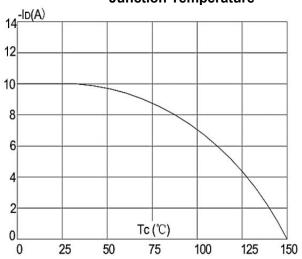


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

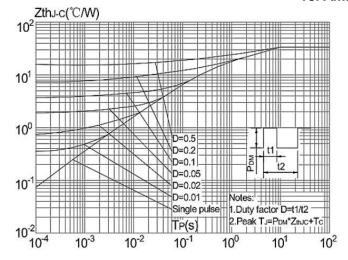
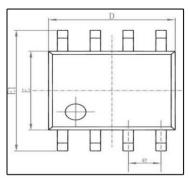
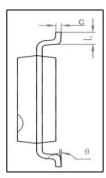
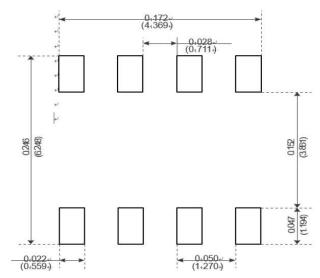




Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient


Package Mechanical Data-SOP-8L

Symbol	Dimensions I	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0.053	0.069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0. 006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	O (BSC)	0.050	(BSC)
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads-

Package Marking and Ordering Information

. Longo marmig and or corning mornication					
Product ID	Pack	Marking	Qty(PCS)		
TAPING	SOP-8L		3000		

5