

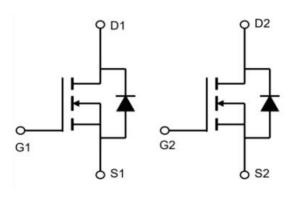
40V N+N-Channel Enhancement Mode MOSFET

Description

The SX15H04S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 40V I_D =15A


 $R_{DS(ON)} < 10m\Omega @ V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units
V _D s	Drain-Source Voltage	40	V
Vgs	Gate-Source Voltage	±20	V
l o@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	15	Α
l b@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ¹	10	Α
Ілм	Pulsed Drain Current ²	45	А
EAS	Single Pulse Avalanche Energy ³	181	mJ
las	Avalanche Current	16	Α
P ₀@Tc=25°C	Total Power Dissipation ⁴	33.7	W
Тѕтс	Storage Temperature Range	-55 to 150	$^{\circ}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
Rеja	Thermal Resistance Junction-Ambient ¹	85	°C/W
Rejc	Thermal Resistance Junction-Case ¹	2.1	°C/W

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	40			V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.028		V/°C	
RDS(ON)	Static Drain-Source On-Resistance	Vgs=10V , ID=30A		8.5	10	mΩ	
		Vgs=4.5V , ID=15A		10	16		
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.2	1.6	2.5	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient			-6.16		mV/℃	
IDCC	Drain-Source Leakage Current	V _{DS} =40V , V _{GS} =0V , T _J =25℃			1		
IDSS		V _{DS} =40V , V _{GS} =0V , T _J =55°C			5	uA	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	Vps=5V , Ip=30A		22		S	
Rg	Gate Resistance	VDS=0V , VGS=0V , f=1MHz		1.7	3.4	Ω	
Qg	Total Gate Charge (4.5V)			37			
Qgs	Gate-Source Charge	V _{DS} =20V , V _{GS} =10V , I _D =25A		6		nC	
Qgd	Gate-Drain Charge			7			
Td(on)	Turn-On Delay Time			12			
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =1Ω		12		ns	
Td(off)	Turn-Off Delay Time	b=25A		38			
Tf	Fall Time			9		1	
Ciss	Input Capacitance			2400			
Coss	Output Capacitance	V _{DS} =20V , V _{GS} =0V , f=1MHz		192		pF	
Crss	Reverse Transfer Capacitance			165			
ls	Continuous Source Current ^{1,5}				50	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			200	Α	
VSD	Diode Forward Voltage ²	Vgs=0V,Is=1A,Tյ=25℃			1.2	V	
trr	Reverse Recovery Time	IF=30A ,		22		nS	
Qrr	Reverse Recovery Charge	dl/dt=100A/µs ,Tյ=25℃		11		nC	

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\,\, \leqq \, 300 \text{us}$, duty cycle $\,\, \leqq \, 2\%$
- $3\,{}^{\backprime}$ The power dissipation is limited by $150\,{}^\circ\!\mathrm{C}\textsc{junction}$ temperature
- $4\sqrt{100}$ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation

2

www.sxsemi.com

Typical Characteristics

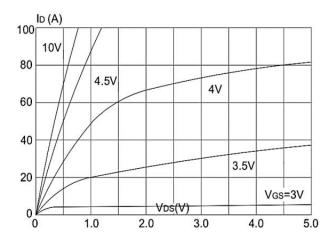


Figure1: Output Characteristics

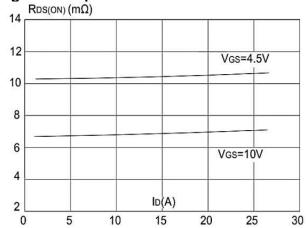
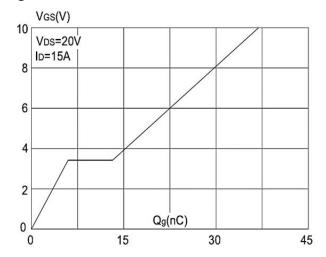



Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

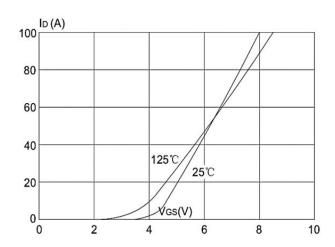


Figure 2: Typical Transfer Characteristics

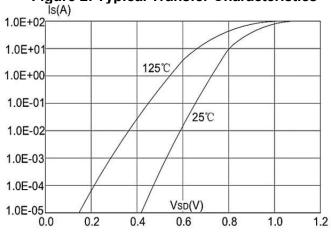
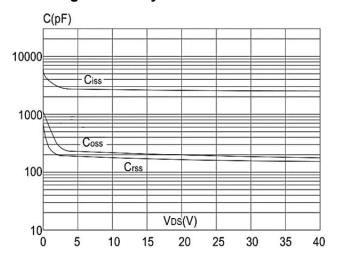



Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

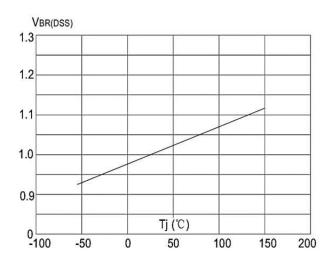


Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

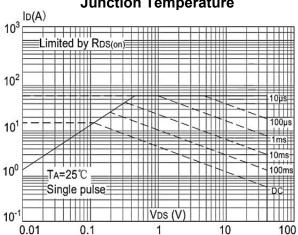


Figure 9: Maximum Safe Operating Area vs. Case Temperature

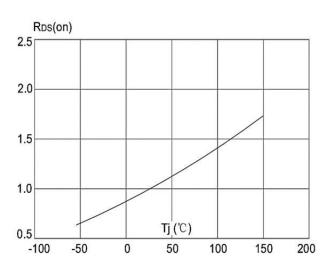
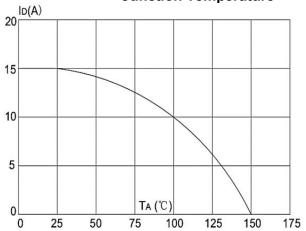
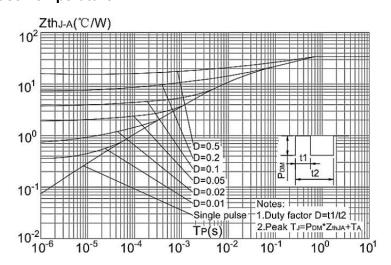
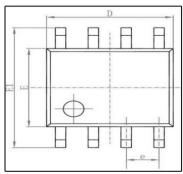
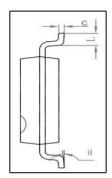
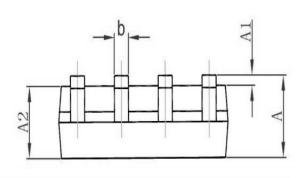



Figure 8: Normalized on Resistance vs Junction Temperature

Figure 10: Maximum Continuous Drain Current


Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case



Package Mechanical Data-SOP-8

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0.020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads

Package Marking and Ordering Information

- actuage manning an		/··	
Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000

www.sxsemi.com