

Features

- Inputs: 28, 155, 165 and 270 Vdc
- One, two or three outputs
- Outputs from 2 to 48 Vdc
- MIL-STD-704D/E/F transient compliance for 28 and 270 Vdc
- MIL-STD-1399A compliance for 155 Vdc
- Up to 13.5 W/in³
- High efficiency
- Remote sense
- ZCS power architecture
- Low noise FM control
- 1 Up:

2.58" x 2.5" x 0.62" (Half Size) 4.9" x 2.5" x 0.62" (Full Size)

- 2 Up:
 - 2.58" x 4.9" x 0.62" (Half Size) 4.9" x 4.9" x 0.62" (Full Size)
- 3 Up: 2.58" x 7.3" x 0.62" (Half Size) 4.9" x 7.3" x 0.62" (Full Size)

Product Highlights

Vicor's MI-MegaMod family of single, dual, and triple output DC-DC converters provide power system designers with cost-effective, high-performance, off-the-shelf solutions to applications that might otherwise require a custom supply.

Incorporating standard MI-200 or MI-J00 family converters in rugged, chassis mount packages, MegaMods can be ordered with single, dual, or triple outputs, having a combined output power of up to 300 W. Totally isolated outputs eliminate efficiency penalties and output interaction problems.

Data Sheet

MI-MegaMod Family

10 to 300 Watts DC-DC Converters Single, Dual, Triple Output Chassis Mount

Configuration Chart

Full-Size Modules - N	legaMod		<u>Junior-Size Modules – M</u>	legaMod Jr	
	Output	# of		Output	# of
Configuration	Power	Modules	Configuration	Power	Modules
Single Output			Single Output		
MI-L · · ·	50 – 100 W	1	MI-LJ • • • •	10 – 50 W	1
MI-M • • - • • • • • • • • • • • • • • • •	150 – 200 W	2			
MI-N : - : :	300 W	3			
Dual Output			Dual Output		
MI-P	100 – 200 W	2	MI-PJ 🖸 🖸 🗗 - 📆 🔛 🔛	20 – 100 W	2
MI-Q • • • • • • • • • • • • • • • • • • •	200 – 300 W	3			
Triple Output MI-R · · · · · · · · · · · · · · · · · · ·	150 – 300 W	3	Triple Output MI-RJ · · · · · · · · · · · · · · · · · · ·	30 – 150 W	3

Input Voltage

Nominal	Range	Transient ^[a]
2 = 28 V	18 – 50 V ^[b]	60
5 = 155 V	100 – 210 V	230
6 = 270 V	125 – 400 V	475
7 = 165 V	100 – 310 V	n/a

[[]a] Transient voltage for 1 second.

Output Voltage

T = 6.5 V ^[c]	N = 18.5 V
R = 7.5 V ^[c]	3 = 24 V
M = 10 V	L = 28 V
1 = 12 V	J = 36 V
P = 13.8 V	K = 40 V
2 = 15 V	4 = 48 V
	$\mathbf{R} = 7.5 \text{ V}^{[c]}$ $\mathbf{M} = 10 \text{ V}$ 1 = 12 V $\mathbf{P} = 13.8 \text{ V}$

MegaMod	MegaMod Jr.
I = -40 to +85 M = -55 to +85	-40 to +100 -55 to +100
Refers to Basep	late Temperature

Product Grade Temperature (°C)

Output Power/Current

Me	gaMod	Megal	Mod Jr.
VOUT ≥5 V	VOUT < 5 V	VOUT ≥ 5 V	VOUT < 5 V
Y = 50 W X = 75 W W = 100 W V = —	Y = 10 A X = 15 A W = 20 A V = 30 A	A = 10 W Z = 25 W Y = 50 W	A = Z = 5 A Y = 10 A

Output Power/Current

VOUT < 5 V
V = 30 A
U = -
S = 60 A

VOUT ≥5 V	VOUT < 5 V
S = 300 W P = —	S = — P = 90 A

[[]b] 16 V operation at 75% load.

^[c] 75 W max. module power for 28 V input voltage

MEGAMOD SPECIFICATIONS

(typical at T_{BP} = 25°C, nominal line, 75% load, unless otherwise specified)

■ INPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Inrush charge		120x10 ⁻⁶	200x10 ⁻⁶		Nom. line, per module
Input reflected ripple current – pp		10		%IIN	Nom. line, full load
		$30+20 \text{ Log} \left(\frac{V_{IN}}{V_{OUT}}\right)$		dB	120 Hz, nom. line
input rippie rejection		$20+20 \log \left(\frac{V_{IN}}{V_{OUT}}\right)$		dB	2400 Hz, nom. line
No load power dissipation		1.35	2	Watts	Per module

■ OUTPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Setpoint accuracy		0.5	1	%Vnom	
Load / line regulation		0.05	0.2	%Vnoм	LL to HL, 10% to FL
Load / line regulation		0.2	0.5	%Vnom	LL to HL, NL to 10%
Output temperature drift		0.01	0.02	% / °C	Over rated temp.
Long term drift		0.02		%/1K hours	
Output ripple - pp					
≤ 10 V		80	150	mV	20 MHz bandwidth
12 – 48 V		0.75	1.5	%Vnom	20 MHz bandwidth
Output voltage trimming ^[a]	50		110	%Vnom	
Total remote sense compensation	0.5			Volts	0.25 V max. neg. leg
OVP setpoint	115	125	135	Vnom	Recycle power
Current limit	105		125	Inom	Automatic restart
Short circuit current			130	%Ілом	

 $^{^{[}a]}$ 10 V,12 V and 15 V outputs, standard trim range $\pm 10\%$. Consult factory for wider trim range.

■ CONTROL PIN SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Gate out impedance		50		Ω	
Gate in impedance		10 ³		Ω	
Gate in open circuit voltage		6.0		Volts	Use open collector
Gate in low threshold	0.65			Volts	
Gate in low current			6.0	mA	

Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715

MEGAMOD SPECIFICATIONS (cont.)

■ DIELECTRIC WITHSTAND CHARACTERISTICS

Parameter	Min	Тур	Max	Unit	Notes
Isolation (input to output)	3,000			VRMS	
Isolation (output to baseplate)	500			VRMS	
Isolation (input to baseplate)	1,500			VRMS	

■ THERMAL CHARACTERISTICS

Parameter	Min	Тур	Max	Units	Note
Efficiency		80 – 90%			
Baseplate to chassis		0.1		°C/Watt	
Thermal Shutdown (drivers only)	90	95	105	°C	

■ MECHANICAL SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Weight					
1 Up		9.0 (255)		Ounces (Grams)	
2 Up		1.2 (545)		Lbs. (Grams)	
3 Up		1.7 (772)		Lbs. (Grams)	

MEGAMOD JR. SPECIFICATIONS

(typical at T_{BP} = 25°C, nominal line, 75% load, unless otherwise specified)

■ INPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Inrush charge		60x10 ⁻⁶	100x10 ⁻⁶	Coulombs	Nom. line, per module
Input reflected ripple current — pp		10		%lin	Nom. line, full load
lanut sipple rejection		$30+20 Log \left(\frac{V_{IN}}{V_{OUT}}\right)$		dB	120 Hz, nom. line
Input ripple rejection		$20+20 \text{Log} \left(\frac{\text{V}_{\text{IN}}}{\text{V}_{\text{OUT}}} \right)$		dB	2400 Hz, nom. line
No load power dissipation		1.35	2	Watts	Per module

■ OUTPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Setpoint accuracy		0.5	1	%Vnom	
Load/line regulation		0.05	0.2	%Vnom	LL to HL, 10% to FL
Load/iiile regulation		0.2	0.5	%Vnom	LL to HL, NL to 10%
Output temperature drift		0.01	0.02	%/°C	Over rated temp.
Long term drift		0.02		%/1K hours	
Output ripple, pp					
≤ 10 V		80	150	mV	20 MHz bandwidth
12 V – 48 V		0.75	1.5	%Vnom	20 MHz bandwidth
Output voltage trimming [a]	50		110	%Vnom	
Total remote sense compensation	0.5			Volts	0.25V max. neg. leg
OVP setpoint		N/A			
Current limit	105		125	%Ілом	Automatic restart

[[]a] 10 V, 12 V and 15 V outputs, standard trim range ±10%. Consult factory for wider trim range.

■ CONTROL PIN SPECIFICATIONS

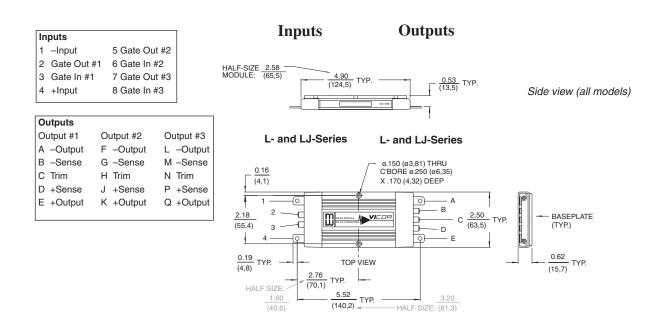
Parameter	Min	Тур	Max	Units	Notes
Gate out impedance		50		Ω	
Gate in impedance		10 ³		Ω	
Gate in high threshold		6.0		Volts	Use open collector
Gate in low threshold	0.65			Volts	
Gate in low current			6.0	mA	

Vicor Corp. Tel: 800-735-6200, 978-470-2900 Fax: 978-475-6715

MEGAMOD JR. SPECIFICATIONS (cont.)

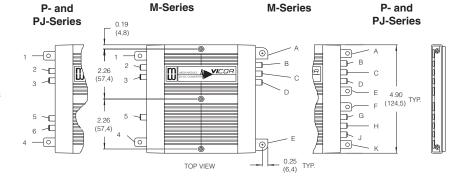
■ DIELECTRIC WITHSTAND CHARACTERISTICS

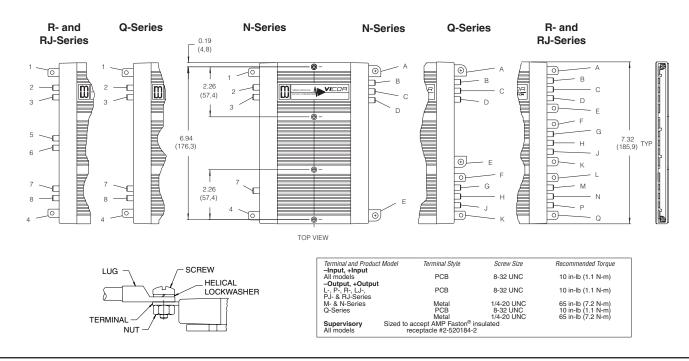
Parameter	Min	Тур	Max	Unit	Notes
Isolation (input to output)	3,000			VRMS	Baseplate earthed
Isolation (output to baseplate)	500			VRMS	
Isolation (input to baseplate)	1,500			VRMS	


■ THERMAL CHARACTERISTICS

Parameter	Min	Тур	Max	Units	Notes
Efficiency		80 – 90%			
Baseplate to chassis		0.1		°C/Watt	

■ MECHANICAL SPECIFICATIONS


Parameter	Min	Тур	Max	Units	Notes
Weight					
1 Up		4.5 (127)		Ounces (Grams)	
2 Up		8.8 (250)		Ounces (Grams)	
3 Up		13.3 (377)		Ounces (Grams)	


MEGAMOD MECHANICAL SPECIFICATIONS

Mounting Information

Use #6 machine hardware torqued to 5-7 in-lbs.

Warranty

Vicor products are guaranteed for two years from date of shipment against defects in material or workmanship when in normal use and service. This warranty does not extend to products subjected to misuse, accident, or improper application or maintenance. Vicor shall not be liable for collateral or consequential damage. This warranty is extended to the original purchaser only.

EXCEPT FOR THE FOREGOING EXPRESS WARRANTY, VICOR MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Vicor will repair or replace defective products in accordance with its own best judgement. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty.

Information published by Vicor has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Vicor reserves the right to make changes to any products without further notice to improve reliability, function, or design. Vicor does not assume any liability arising out of the application or use of any product or circuit; neither does it convey any license under its patent rights nor the rights of others. Vicor general policy does not recommend the use of its components in life support applications wherein a failure or malfunction may directly threaten life or injury. Per Vicor Terms and Conditions of Sale, the user of Vicor components in life support applications assumes all risks of such use and indemnifies Vicor against all damages.

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor components are not designed to be used in applications, such as life support systems, wherein a failure or malfunction could result in injury or death. All sales are subject to Vicor's Terms and Conditions of Sale, which are available upon request.

Specifications are subject to change without notice.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. Interested parties should contact Vicor's Intellectual Property Department.

Vicor Corporation

25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715

email

Customer Service: custserv@vicorpower.com Technical Support: apps@vicorpower.com