

Description

The SX8G06S uses advanced trench technology to provide excellent Rds(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 60V I_{D} = 8.5A$

 $R_{DS(ON)} < 52m\Omega$ @ $V_{GS}=10V$

 $V_{DS} = -60V I_{D} = -7.7A$

 $R_{DS(ON)}$ < 100m Ω @ V_{GS}=-10V

Application

Wireless charging

Boost driver

Brushless motor

Absolute Maximum Ratings (T_c=25°C unless otherwise noted)

		Rati			
Symbol	Parameter	N-Channel	P-Channel	Units	
VDS	Drain-Source Voltage	in-Source Voltage 60 -60		V	
VGS	Gate-Source Voltage	±20	±20	V	
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	8.5	-7.7	Α	
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	Continuous Drain Current, V _{GS} @ 10V ¹ 4.0		А	
IDM	Pulsed Drain Current ²	Pulsed Drain Current ² 20		А	
EAS	Single Pulse Avalanche Energy³	22	28.8	mJ	
IAS	Avalanche Current	21 -24		Α	
P o@T a=25℃	Total Power Dissipation ⁴	2	2	W	
TSTG	Storage Temperature Range	-55 to 150	-55 to 150	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	$^{\circ}$	
ReJA	Thermal Resistance Junction-Ambient ¹	85	85		
R₀JC	Thermal Resistance Junction-Case ¹	62.5		°C/W	

N-Channel Electrical Characteristics (TJ =25 ℃, unless otherwise noted)

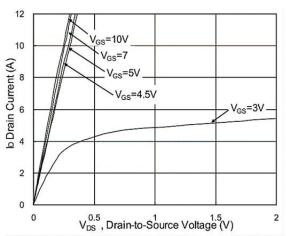
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	60	65		V
∆BVDSS/∆T J	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA		0.063		V/℃
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ib=5A		38	52	
KD3(ON)		Vgs=4.5V , ID=4A		55	75	mΩ
VGS(th)	Gate Threshold Voltage	\/ \/ 0504	1.2	1.75	2.5	V
△VGS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =250uA		-5.24		mV/℃
IDCC	Dunin Course Lookson Cumout	V _{DS} =48V , V _{GS} =0V , T _J =25°C			1	
IDSS	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5	uA
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =4A		28		S
Qg	Total Gate Charge (4.5V)			19		
Qgs	Gate-Source Charge	VDS=48V , VGS=4.5V , ID=4A		2.6		nC
Qgd	Gate-Drain Charge			4.1		
Td(on)	Turn-On Delay Time			3		
Tr	Rise Time	V _{DD} =30V , V _{GS} =10V , R _G =3.3Ω,		34		
Td(off)	Turn-Off Delay Time	, r.G-3.312, lo=4A		23		ns
Tf	Fall Time			6.0		
Ciss	Input Capacitance			1027		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		65		pF
Crss	Reverse Transfer Capacitance			45		
IS	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			2.5	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3 . The power dissipation is limited by $150\,^\circ\!\!\!\mathrm{C}$ junction temperature
- 4. The data is theoretically the same as I D and I DM, in real applications, should be limited by total power dissipation

P-Channel Electrical Characteristics (TJ =25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=-250uA	-60	-65	-	V
△BVDSS/△T J	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.03		V/℃
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=-10V , Ip=-3A		80	100	mΩ
KD3(ON)		Vgs=-4.5V , Ip=-2A		100	105	
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =-250uA	-1.2	1.75	-2.5	V
IDSS	Drain-Source Leakage Current	Vɒs=-48V , Vgs=0V , Tɹ=25℃			1	· uA
IDSS		V _{DS} =-48V , V _{GS} =0V , T _J =55℃			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	VDS=-5V , ID=-3A		8.5		S
Qg	Total Gate Charge (-4.5V)			12.1		
Qgs	Gate-Source Charge	VDS=-48V , VGS=-4.5V , ID=-3A		2.2		nC
Qgd	Gate-Drain Charge			6.3		
Td(on)	Turn-On Delay Time			9.2		
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V ,		20.1		
Td(off)	Turn-Off Delay Time	Rg=3.3□, lb=-1A		46.7		ns
Tf	Fall Time			9.4		
Ciss	Input Capacitance			1137		
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		76		pF
Crss	Reverse Transfer Capacitance			50		
IS	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-2.5	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=-1A , Tյ=25℃			-1.2	V


Note

- 1、The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 4、The data is theoretically the same as I D and I DM , in real applications , should be limited by total power dissipation.

www.sxsemi.com

N-Channel Typical Characteristics

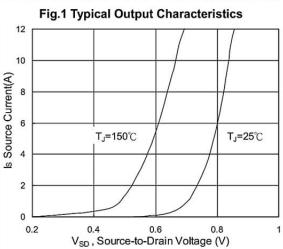


Fig.3 Source Drain Forward Characteristics

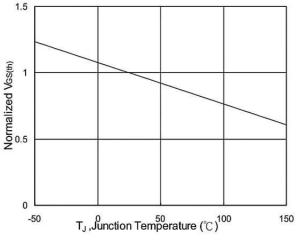


Fig.5 Normalized V_{GS(th)} vs. T_J

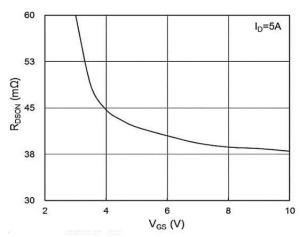


Fig.2 On-Resistance vs. G-S Voltage

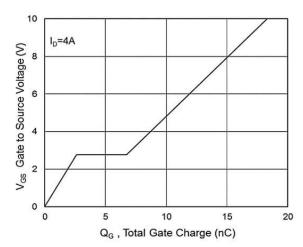


Fig.4 Gate-Charge Characteristics

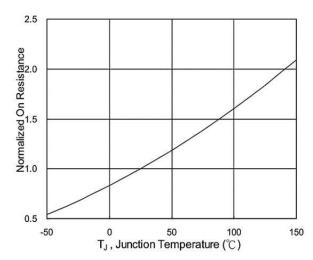
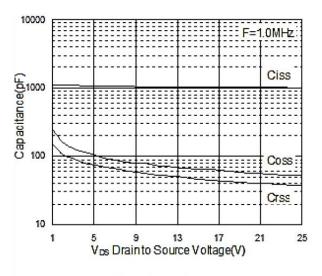



Fig.6 Normalized R_{DSON} vs. T_J

N-Channel Typical Characteristics

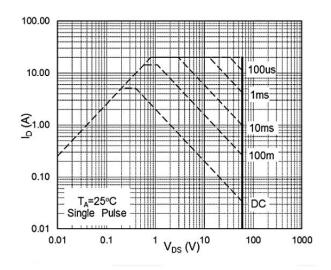


Fig.7 Capacitance

Fig.8 Safe Operating Area

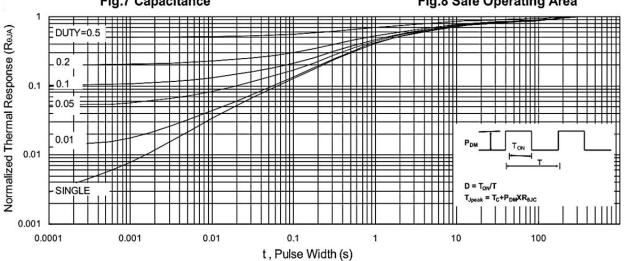


Fig.9 Normalized Maximum Transient Thermal Impedance

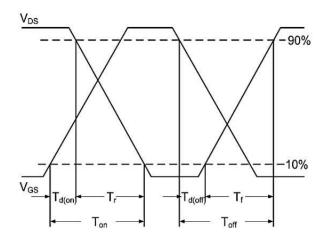


Fig.10 Switching Time Waveform

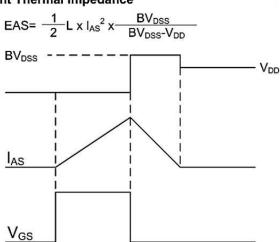


Fig.11 Unclamped Inductive Waveform

P-Channel Typical Characteristics

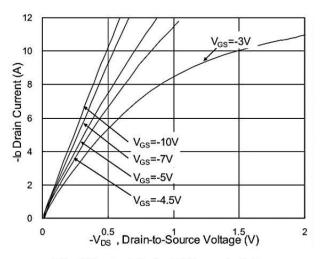


Fig.1 Typical Output Characteristics

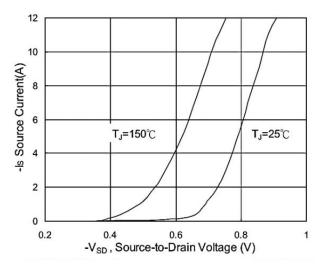


Fig.3 Source Drain Forward Characteristics

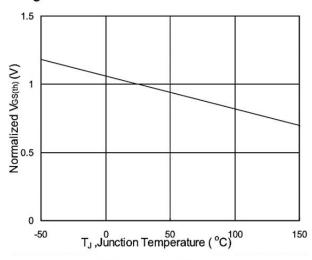


Fig.5 Normalized V_{GS(th)} vs. T_J

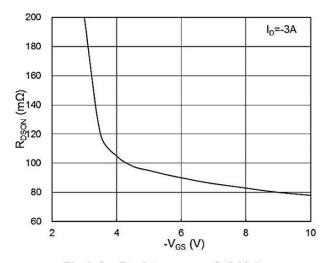


Fig.2 On-Resistance vs. G-S Voltage

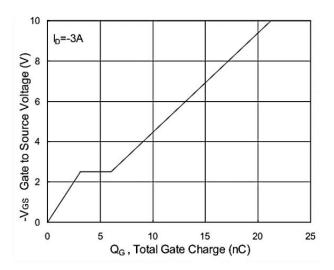


Fig.4 Gate-Charge Characteristics

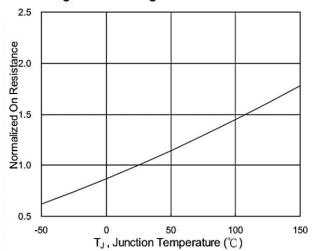


Fig.6 Normalized RDSON vs. TJ

P-Channel Typical Characteristics

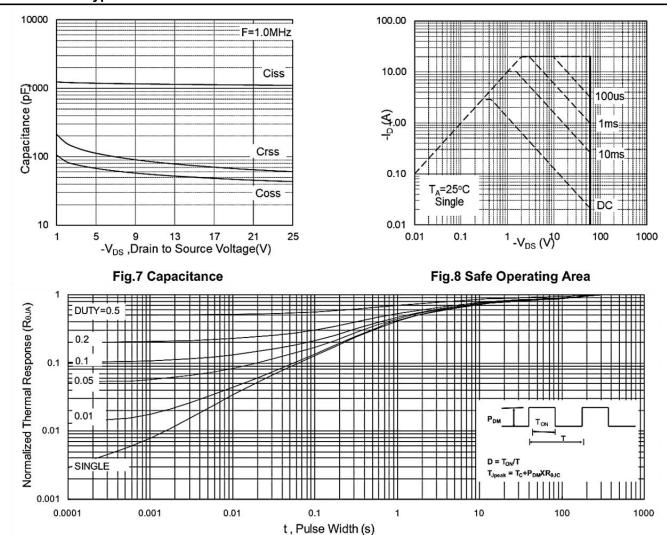


Fig.9 Normalized Maximum Transient Thermal Impedance

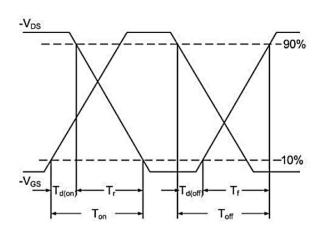
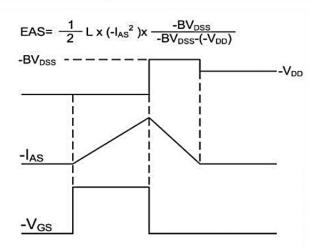
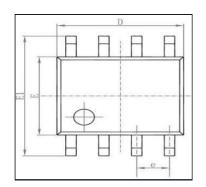
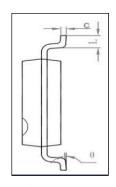
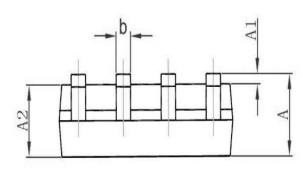
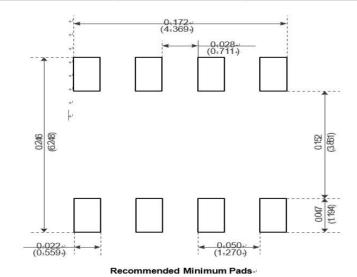


Fig.10 Switching Time Waveform


Fig.11 Unclamped Inductive Waveform


Package Mechanical Data-SOP-8L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 100	0. 250	0. 004	0.010	
A2	1. 350	1. 550	0. 053	0. 061	
b	0. 330	0. 510	0. 013	0.020	
С	0. 170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
E	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
е	1. 270 (BSC)		0.050	(BSC)	
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	

Package Marking and Ordering Information

asitage marking and ordering morniation						
Product ID	Pack	Marking	Qty(PCS)			
TAPING	SOP-8L		3000			