


## **40V N-Channel Enhancement Mode MOSFET**

### Description

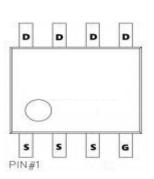
The SX15N04S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.





#### **General Features**

V<sub>DS</sub>=40V I<sub>D</sub> =15A


 $R_{DS(ON)}$  < 13m $\Omega$  @ V<sub>GS</sub>=10V

### **Application**

Battery protection

Load switch

Uninterruptible power supply



Absolute Maximum Ratings (Tc=25°Cunless otherwise noted)

| Symbol                              | Parameter Rating                                 |            | Units |
|-------------------------------------|--------------------------------------------------|------------|-------|
| VDS                                 | Drain-Source Voltage                             | 40         | V     |
| VGS                                 | Gate-Source Voltage                              | ±20        | V     |
| $I_D$ @ $T_A$ =25 $^{\circ}$ C      | Continuous Drain Current, V <sub>GS</sub> @ 10V¹ | 15         | А     |
| I <sub>D</sub> @T <sub>A</sub> =70℃ | Continuous Drain Current, V <sub>GS</sub> @ 10V¹ | 8          | А     |
| IDM                                 | Pulsed Drain Current <sup>2</sup>                | 34         | Α     |
| EAS                                 | Single Pulse Avalanche Energy³                   | 31         | mJ    |
| IAS                                 | Avalanche Current                                | 25         | Α     |
| P <sub>D</sub> @T <sub>A</sub> =25℃ | Total Power Dissipation⁴                         | 1.5        | W     |
| TSTG                                | Storage Temperature Range                        | -55 to 150 | °C    |
| TJ                                  | Operating Junction Temperature Range             | -55 to 150 | °C    |
| R₀JA                                | Thermal Resistance Junction-ambient              | 85         | °C/W  |
| R₀JC                                | Thermal Resistance Junction-Case                 | 30 °C/     |       |



## **40V N-Channel Enhancement Mode MOSFET**

## Electrical Characteristics (Tc=25℃unless otherwise noted)

| Symbol               | Parameter                                      | Conditions                                                           | Min. | Тур.  | Max. | Unit  |  |
|----------------------|------------------------------------------------|----------------------------------------------------------------------|------|-------|------|-------|--|
| BVDSS                | Drain-Source Breakdown Voltage                 | Vgs=0V , Ip=250uA                                                    | 40   | 44    |      | V     |  |
| △BVbss/△T            | BVDSS Temperature Coefficient                  | Reference to 25℃, l <sub>D</sub> =1mA                                |      | 0.034 |      | V/°C  |  |
| RDS(ON)              | Static Drain-Source On-Resistance <sup>2</sup> | Vgs=10V , Ip=8A                                                      |      | 10.5  | 13   | mΩ    |  |
| T CD3(ON)            | Statio Brain Source On Resistance              | V <sub>G</sub> s=4.5V , I <sub>D</sub> =6A                           |      | 11.5  | 17   | 11122 |  |
| VGS(th)              | Gate Threshold Voltage                         | \/aa=\/aa  = -250uA                                                  | 1.0  | 1.6   | 2.5  | V     |  |
| $\triangle V$ GS(th) | V <sub>GS(th)</sub> Temperature Coefficient    | Vgs=Vps , Ip =250uA                                                  |      | -5.64 |      | mV/℃  |  |
| I                    | Drain-Source Leakage Current                   | V <sub>DS</sub> =32V , V <sub>GS</sub> =0V , T <sub>J</sub> =25℃     |      |       | 1    | uA    |  |
| loss                 | Dialii-Source Leakage Guireit                  | V <sub>DS</sub> =32V , V <sub>GS</sub> =0V , T <sub>J</sub> =55℃     |      |       | 5    | uA    |  |
| lgss                 | Gate-Source Leakage Current                    | Vgs=±20V, Vps=0V                                                     |      |       | ±100 | nA    |  |
| gfs                  | Forward Transconductance                       | Vos=5V , Io=8A                                                       |      | 36    |      | S     |  |
| Rg                   | Gate Resistance                                | V <sub>DS</sub> =0V , V <sub>GS</sub> =0V , f=1MHz                   |      | 2.1   |      | Ω     |  |
| Qg                   | Total Gate Charge (4.5V)                       | VDS=20V , VGS=4.5V , ID=8A                                           |      | 10.7  |      | nC    |  |
| Qgs                  | Gate-Source Charge                             |                                                                      |      | 3.3   |      |       |  |
| Qgd                  | Gate-Drain Charge                              |                                                                      |      | 4.2   |      |       |  |
| Td(on)               | Turn-On Delay Time                             |                                                                      |      | 8.6   |      |       |  |
| Tr                   | Rise Time                                      | V <sub>DD</sub> =12V , V <sub>GS</sub> =10V ,<br>R <sub>G</sub> =3.3 |      | 3.4   |      |       |  |
| Td(off)              | Turn-Off Delay Time                            | b=6A                                                                 |      | 24.8  |      | ns    |  |
| Tf                   | Fall Time                                      | 1D-0A                                                                |      | 2.2   |      |       |  |
| Ciss                 | Input Capacitance                              |                                                                      |      | 1314  |      |       |  |
| Coss                 | Output Capacitance                             | V <sub>DS</sub> =15V , V <sub>GS</sub> =0V , f=1MHz                  |      | 120   |      | pF    |  |
| Crss                 | Reverse Transfer Capacitance                   |                                                                      |      | 88    |      |       |  |
| ls                   | Continuous Source Current <sup>1,5</sup>       | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current                   |      |       | 8.5  | Α     |  |
| Isм                  | Pulsed Source Current <sup>2,5</sup>           | vg-vb-0v , roice cuitetii                                            |      |       | 34   | Α     |  |
| VsD                  | Diode Forward Voltage <sup>2</sup>             | Vgs=0V , Is=1A , Tյ=25℃                                              |      |       | 1.2  | V     |  |

#### Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2、The data tested by pulsed , pulse width  $\leq$  300us , duty cycle  $\leq$  2%
- 3. The EAS data shows Max. rating . The test condition is VDD=32V,VGS=10V,L=0.1Mh,IAS=22A  $\,$
- 5, The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

2

www.sxsemi.com



# **Typical Characteristics**

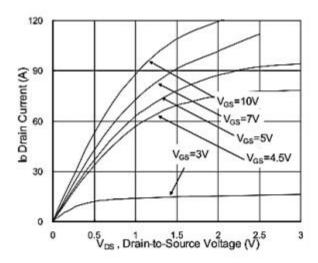



Fig.1 Typical Output Characteristics

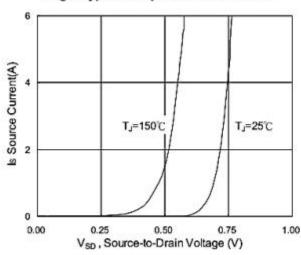



Fig.3 Forward Characteristics of Reverse

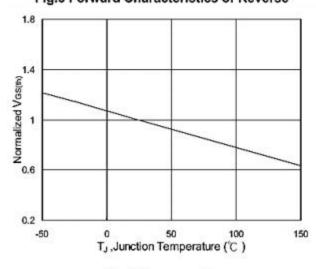



Fig.5 V<sub>GS(th)</sub> vs. T<sub>J</sub>

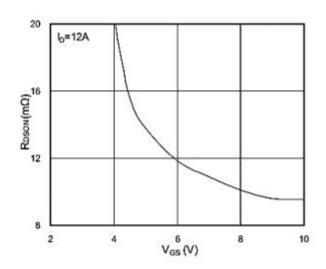



Fig.2 On-Resistance vs. G-S Voltage

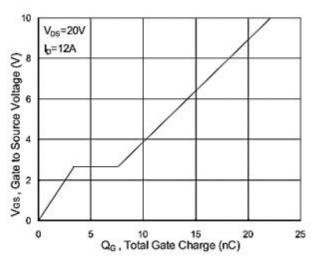



Fig.4 Gate-Charge Characteristics

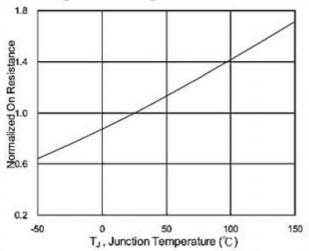
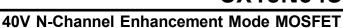
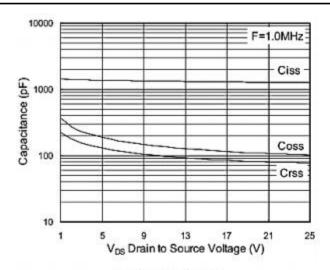





Fig.6 Normalized RDSON vs. TJ





### **Typical Characteristics**



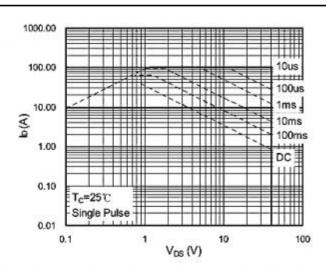



Fig.7 Capacitance

Fig.8 Safe Operating Area

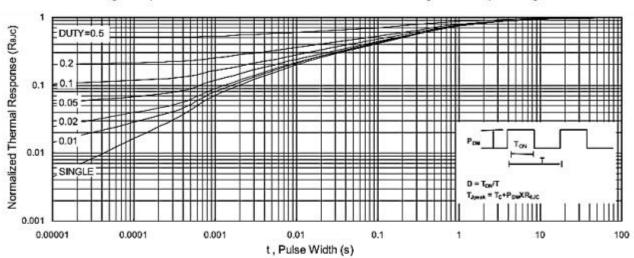



Fig.9 Normalized Maximum Transient Thermal Impedance

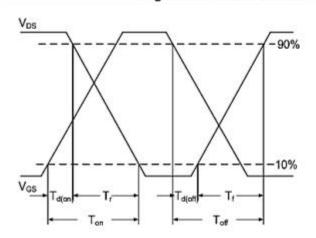
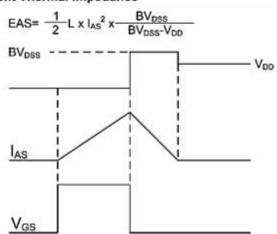
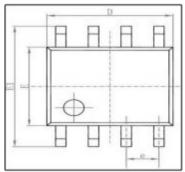
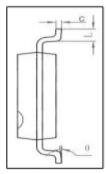
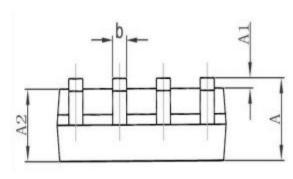
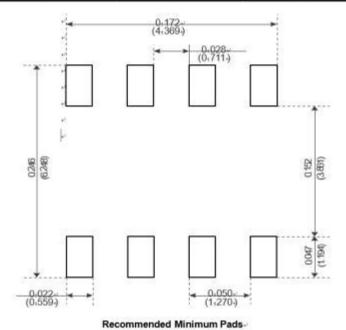



Fig.10 Switching Time Waveform



Fig.11 Unclamped Inductive Switching Waveform




# Package Mechanical Data-SOP-8







| 0   1  | Dimensions I | n Millimeters | Dimensions | s In Inches |
|--------|--------------|---------------|------------|-------------|
| Symbol | Min          | Max           | Min        | Max         |
| Α      | 1. 350       | 1. 750        | 0. 053     | 0.069       |
| A1     | 0. 100       | 0. 250        | 0. 004     | 0.010       |
| A2     | 1. 350       | 1. 550        | 0.053      | 0.061       |
| b      | 0. 330       | 0. 510        | 0.013      | 0.020       |
| С      | 0. 170       | 0. 250        | 0.006      | 0.010       |
| D      | 4. 700       | 5. 100        | 0. 185     | 0. 200      |
| E      | 3. 800       | 4. 000        | 0. 150     | 0. 157      |
| E1     | 5. 800       | 6. 200        | 0. 228     | 0. 244      |
| е      | 1. 270 (BSC) |               | 0. 050     | 0 (BSC)     |
| L      | 0. 400       | 1. 270        | 0.016      | 0.050       |
| θ      | 0°           | 8°            | 0°         | 8°          |



**Package Marking and Ordering Information** 

| Product ID | Pack  | Marking | Qty(PCS) |
|------------|-------|---------|----------|
| TAPING     | SOP-8 |         | 3000     |

5