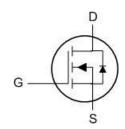


Description


The NTHL095N65S3HF use super junction technology and design to provide excellent RDS(ON) with low gate charge. This super junction MOSFET fits the industry's AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.

The NTHL095N65S3HF meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO-247

Features

- · Super Low Gate Charge
- · 100% EAS Guaranteed
- · Green Device Available
- · Excellent CdV/dt effect decline
- · Advanced trench gate super junction technology

Ordering Part Number	Package	Qty(PCS)
NTHL095N65S3HF	TO-247	30

Maximum Ratings ($T_C = 25$ °C unless otherwise specifed)

Symbol	Parameter	Rating	Units
Vos	Drain-Source Voltage	650	V
Vgs	Gate-Source Voltage	±30	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	40	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	29	А
Ірм	Pulsed Drain Current ²	160	А
EAS	Single Pulse Avalanche Energy ³	750	mJ
las	Avalanche Current		А
P _D @T _C =25°C	Total Power Dissipation ⁴	470	W
Тѕтс	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C
R ₀ JA	Thermal Resistance Junction-ambient ¹	41	°C/W
R _θ JC	Thermal Resistance Junction-Case ¹	0.27	°C/W

Electrical Characteristics (at Tj = 25 °C, unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	650			V
$\triangleBV_{DSS}/\triangleT_J$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =21.5A		75	90	mΩ
		V _{GS} =4.5V , I _D =21.5A				
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	3.2		4.5	V
$\Delta V_{GS(th)}$	GS(th) Temperature Coefficient					mV/°C
I _{DSS}	Drain Course Leakers Current	V _{DS} =650V , V _{GS} =0V , T _J =25°C			5	uA
	Drain-Source Leakage Current	V _{DS} =650V, V _{GS} =0V , T _J =150°C		1000		
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±30V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =20V , I _D =21.5A		30		S
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1		Ω
Qg	Total Gate Charge	V _{DS} =480V , V _{GS} =10V , I _D =21.5A		84		
Q _{gs}	Gate-Source Charge			28		nC
Q_{gd}	Gate-Drain Charge			36		
T _{d(on)}	Turn-On Delay Time	VGS=10V, VDS=400V, RG=27Ω, ID=21.5A		89		
Tr	Rise Time			131		ns
T _{d(off)}	Turn-Off Delay Time			204		
T _f	Fall Time			69		
C _{iss}	Input Capacitance	V _{DS} =100V , V _{GS} =0V , f=1MHz		3445		
Coss	Output Capacitance			134		pF
C _{rss}	Reverse Transfer Capacitance			0.6		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			40	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =21.5A , T _J =25°C	0.7	0.9	1.1	V
t _{rr}	Reverse Recovery Time	IF=21.5 , di/dt=100A/μs ,		113	-	nS
Qrr	Reverse Recovery Charge	T _J = 25°C		0.6		nC

Note:

FÈThe Ádata Ádested Áby Ásurface Ánounted Ábn Áa Át Ánch^{2 Á}FR-4 Áboard Ávith Á2OZ Ácopper.

CEThe Ádata Ádested Áby Ápulsed Á Ápulse Ávidth Ág 300 us Á Áduty Ádycle Ág 2%

HÈ he EAS data shows Max. rating . The test condition is VRÁVÁGÍ »Ô,VDD=200V,VGS=10V,L=30mH I È heÁpowerÁdissipationÁsÁimitedÁbyÁ150°C junctionÁemperature

Í È he Áslata Ás Ás heoretically Ás he Ásame Ás sÁ_{D. Á}and Á_{D. Ás} háteal Ás pplications Ás hould Áse Áimited Ásy Ástal Ásower Á dissipation.

Typical Performance Characteristics

Fig 1. Output Characteristics (T_i=25℃)

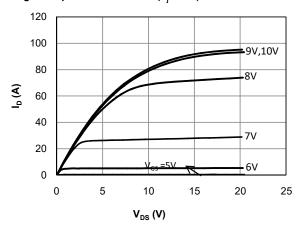


Fig 2. Output Characteristics (T_i =150 $^{\circ}$ C)

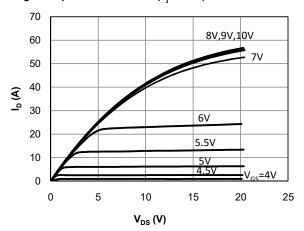


Fig 3: Transfer Characteristics

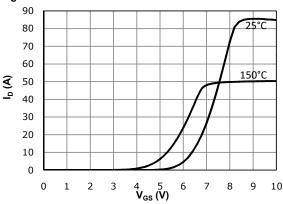


Fig 4: V_{TH} vs. T_j Temperature Characteristics

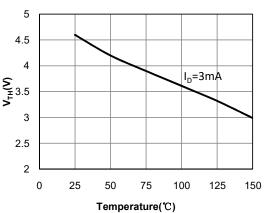


Fig 5: $R_{DS(on)}$ vs. I_{DS} Characteristics(T_j =25 $^{\circ}$ C)

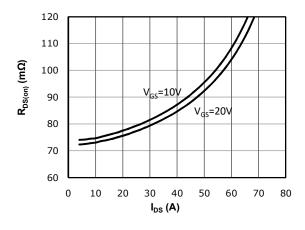


Fig 6: R_{DS(on)} vs. Temperature

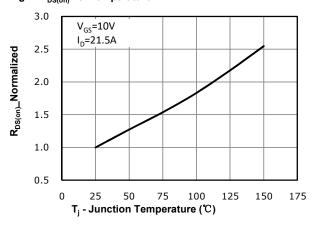


Fig 7: $\mathrm{BV}_{\mathrm{DSS}}$ vs. Temperature 1.08 1.06 1.04 BV_{DSS} (Nomalized) 1.02 1.00 0.98 0.96 0.94 0.92 100 -25 0 25 50 75

T_i - Junction Temperature (℃)

125

Fig 8: R_{DS(on)} vs. Gate Voltage 500 450 $I_{D} = 21.5A$ 400 350 (m) 300 250 150°C 200 150 100 25°C 50 0 5 8 10 6 9 $V_{GS}(V)$

Fig 9: Body-diode Forward Characteristics

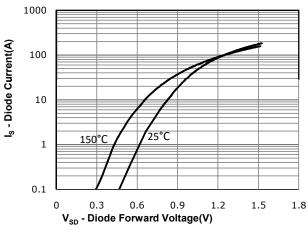


Fig 10: Gate Charge Characteristics

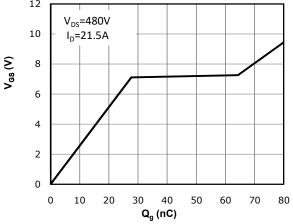
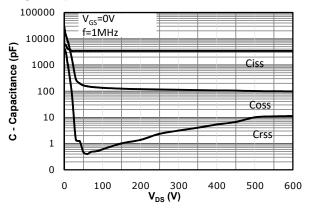
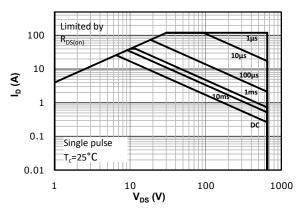
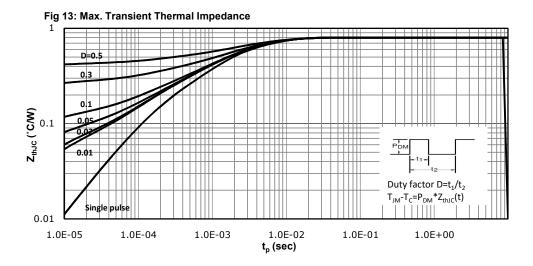
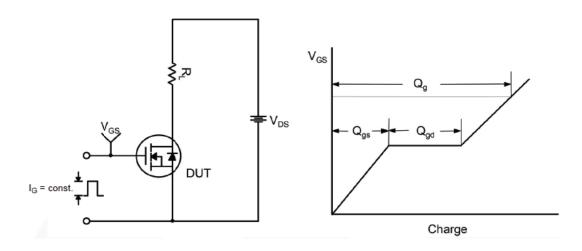
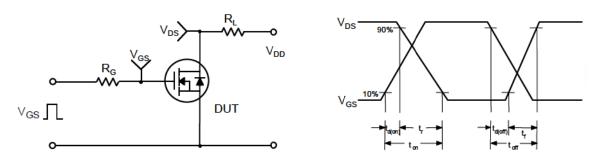


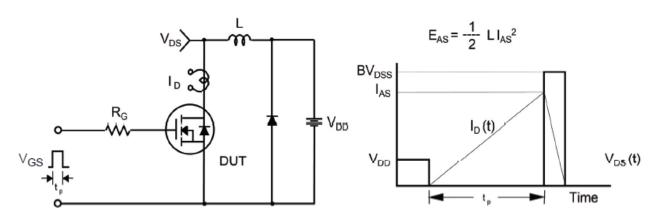
Fig 11: Capacitance Characteristics

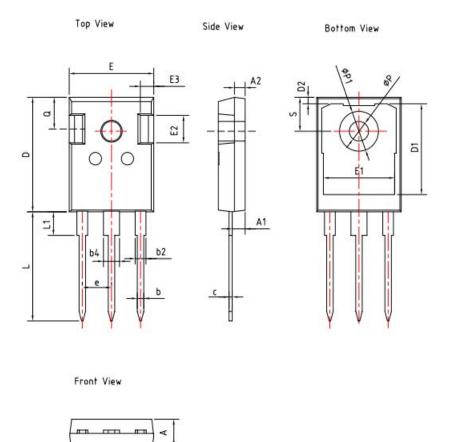

Fig 12: Safe Operating Area

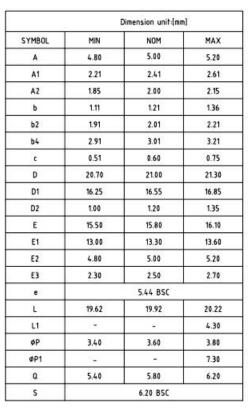


Test Circuit Schematic


Gate Charge Test Circuit & Waveform

Switching Test Circuit & Waveforms


Unclamped Inductive Switching Test Circuit & Waveforms



Package Dimensions

Package TO-247

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc.

 When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.