

TL431 DATASHEET

Specification Revision History:

Version	Date	Description	
V1.0	2019/12	New	
V1.1	2021/01	Modify Ordering Information	
V1.2	2025/02	Modify Ordering Information	
V1.3	2025/03	Add application precautions and	
		overall typesetting.	

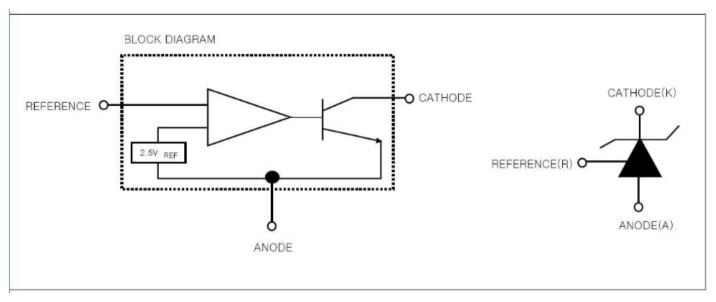
- Equivalent Full Range Temperature Coefficient 50PPM/°C
- Temperature Compensated For Operation Over Full Rate Operating Temperature Range
- Adjustable Output Voltage
- Fast Turn-on Response
- Sink Current Capability 1mA to 100mA
- Low(0.27ΩTyp.)Dynamic Output Impedance
- Low Output Noise

DESCRIPTION

The 431 is three-terminal adjustable shunt regulator with specified thermal stability. The output voltage may be set to any value between VREF (Approx. 2.495V) and 36V with two external resistors. This device has a typical output impedance of 0.2Ω . Active output circuitry provides a very sharp tum-on characteristic, making this device excellent replacement for zener diodes in many application

The appearance of the product

SOT-23-3


Ordering Information

Product Model	Package Type	Marking	Packing	Packing Qty
TL431A(GMIC)	SOT-23	431	REEL	3000PCS/REEL

WWW.GREENMICRO.NET 2 / 6 VER:V1.3

FUNCTION BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Full Operating Ambient Temperature Range Applies Unless Otherwise Noted)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Cathode Voltage	V _{KA}	40	V
Continuous Cathode Current Range	I _{KA}	-100~+150	mA
Reference Input Current Range	I _{REF}	0.05~10	mA
Junction Temperature	T,	150	°C
Operating Temperature	T _{ORR}	-20~85	°C
Storage Temperature	T _{STG}	-65~150	°C
Total Power Dissipation	P _D	700	mW

ELECTRICAL CHARACTERISTICS

(Ta=25°C, V_{KA} = V_{REF} , I_{K} =10mA unless otherwise specified)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Reference Input Voltage	V_{REF}	$V_{KA} = V_{REF}, I_g = 10 \text{ mA}$	2.483	2.495	2.507	V
Deviation of Reference						
Input Voltage Over Full	V _{REF (dev.)}	T _{min} ≤Ta≤T _{max}		3	17	\/
Temperature Range						mV
Ratio of Change in						
Reference Input Voltage to	A.V. /A.V.	$\triangle V_{KA} = 10V - V_{REF}$	-0.4	0.0	2.7	
the Change in Cathode	$\triangle V_{REF}/\triangle V_{KA}$	△V _{KA} =36V-10V	-0.4	0.0	2.0	mV/V
Voltage						
Reference Input Current	I _{REF}	$R_1=10K\Omega, R_2=\infty$		1.8	4	μΑ
Deviation of Reference						
Input Current Over Full	REF(dev)	$R_1=10K\Omega, R_2=\infty$		0.4	1.2	μΑ
Temperature Range						
Minimum Cathode Current				0.25	٥٦	А
for Regulation	I _{K(min)}			0.25	0.5	mA
Off-State Cathode Current	I _{K(OFF)}	V _{KA} =40V,V _{REF} =0		0.17	0.9	μΑ
Dynamic Impedance	Z _{KA}	I _κ =10mA to 100mA,f≤1.0KHz		0.27	0.5	Ω

Fig. 1 Test Circuit for V KA=VREF

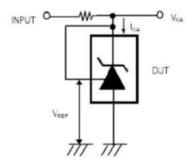
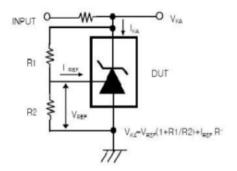
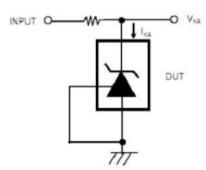
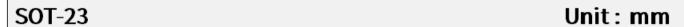
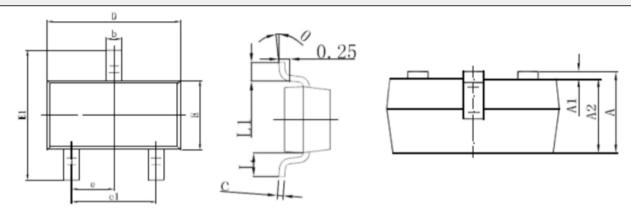


Fig. 2 Test Circuit for V KA≥VREF


Fig. 3 Test Circuit for IKA (off)

Outline Dimensions

	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
А	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
Е	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP		0.037 TYP		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF		0.022 REF		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Important Notice:

- Green Micro chip reserves the right to change products and documents without notice.
 Customers should obtain and verify the completeness of the latest technical information before placing orders. Meanwhile, Green Micro chip shall not assume any responsibility or obligation for non-officially revised documents.
- Any parameters in the entire product specification are for reference only, and actual application testing shall prevail. When customers use the products for system design, they must comply with safety regulations and independently assume the following responsibilities: selecting suitable Green Micro chip products according to application requirements; completing design verification and full-link testing of the application; and ensuring that the application complies with safety regulations or other requirements of the target market. Customers shall bear all personal or property losses caused by design defects or illegal operations, which shall have no relation to Green Micro chip.
- Green Micro chip products are prohibited from being used in scenarios such as life support, military equipment, and key aerospace applications. All accidents and legal liabilities arising from out-of-scope use shall be borne by the user, and Green Micro chip shall not be held responsible.
- All technical resources of Green Micro chip (including data sheets and reference designs) are
 provided "as is", without guarantee of no defects or universality, and without any express or
 implied warranties. The documents are only authorized for product development and
 research described in this document. Unauthorized use of intellectual property, public
 reproduction, and reverse engineering are strictly prohibited. All claims and losses caused by
 illegal use shall be borne by the user, and Green Micro chip shall not be liable.

WWW.GREENMICRO.NET 6 / 6 VER:V1.3