
Parker Chomerics Engineered Laminates

Laminated Product Capabilities

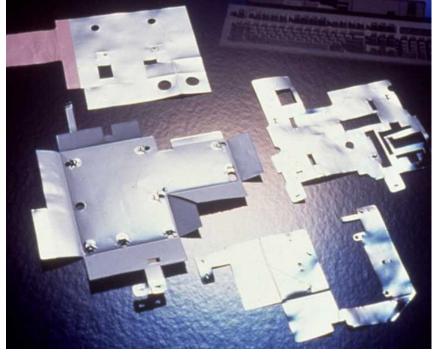
Customer Value Proposition:

Parker Chomerics custom laminates are a compilation of electrically conductive materials integrated with dielectric insulators to provide EMI/ESD shielding, ground paths and electrical isolation. These products are used in numerous applications in a variety of market places (medical, automotive, commercial electronics, etc). Expert engineering and innovative solutions support our ability to manufacture custom laminates that are cost effective and user friendly.

Parker Chomerics offers numerous conductive layer options which include aluminum, plated fabrics and tinned copper. Dielectric layers range from high temperature Kapton and Mylar to Formex-GK. Integrated conductors with insulators may be attached using pressure sensitive adhesives (PSA) or mechanical fasteners to achieve application needs.

Take the engineered laminate solution one step further and add a thermal pad for thermal management or use conductive foam to take up a tolerance gap.

Additional materials available upon request. Contact Parker Chomerics Applications Engineering for additional information.


Contact Information:

Parker Hannifin Corporation Chomerics Division 77 Dragon Court

77 Dragon Court Woburn, MA01801

phone 781 935 4850 fax 781 933 4318 chomailbox@parker.com

parker.com/chomerics

Product Features:

- Economical
- · Lightweight and thin
- Fully customizable
- · Vibration dampening
- Bleach resistant
- · RoHS compliant
- Green versions available
- Easy and quick to implement for production
- · Silk screening
- High temperature resistance

Typical Applications:

- EMI shielding
- Electrical isolation in thin areas
- Grounding
- Electrically insulating for power supplies
- Isolation/insulation
- · Shadow Shielding
- Vibration reduction
- Thermal Isolation

Engineered Laminates - Product Infomation

Table 1 - Conductors - Typical Properties

Material	Thickness inches	Thickness mm	Cost Driver*	Continuous Use Temp °F (°C)	Electrical Resistance	Notes
Nickel-Plated-Copper Polyester Tafetta	.005	0.127	\$	275 (135)	< 0.080 ohm/sq	Very good grounding and shielding, fabric-like characteristics
Aluminum	.002,.003 .005,.010	.051, .076, .127, .254	\$	500 (260)	< .010 ohms/sq	Very Good grounding and shielding High temperature
Copper	0.0014, .0028, .007, .0196	.036, .071, .178, .498	\$\$	500 (260)	< .005 ohms/sq	Excellent grounding and shielding.
Nickel-Plated-Silver Nylon Tafetta	.005	0.127	\$\$	275 (135)	< 0.100 ohm/sq	Very good grounding and shielding, fabric-like characteristics More durable than polyester
Nickel-Plated-Silver Nylon Rip-Stop	.004	0.157	\$\$	275 (135)	< 0.100 ohm/sq	Very good grounding and shielding, fabric-like characteristics, more du-rable than polyester
Tinned-Copper	.0016, .003, .0072	.041, .076, .183	\$\$\$	500 (260)	< .005 ohms/sq	Excellent grounding and shielding, enhanced corrosion resistance

^{*} \$ being less, \$\$\$\$ being more

Table 2 - Insulators - Typical Properties

Material	Thickness inches	Thickness mm	Cost Driver*	Continuous Use Temp °F (°C)	Electrical Resistance	Notes
Mylar	.002, .005	.051, .127	\$	300 (149)	7.7, 13.5 kV	Typically used as release-liner
PVC	.003, .006	.076, .152	\$\$	194 (90)	TBD	Good dielectric properties
Polypropylene (Formex)	.005, .010, .017"	.127, .254, .432	\$\$\$	239 (115)	TBD	Good dielectric properties, good temperature resistance
Kapton	.001, .003	.0254, .076	\$\$\$\$	400 (204)	TBD	Excellent dielectric properties, excel-lent temperature resistance

^{* \$} being less, \$\$\$\$ being more

Table 3 - Adhesives - Typical Properties

Material	Thickness inches	Thickness mm	Cost Driver*	Continuous Use Temp °F (°C)	Electrical Resistance	Adhesive Strength	Notes
Acrylic	.001005	.0254127	\$	300 (149)	-	High	
Silicone	.005	0.127	\$\$	500 (260)	-	Low	Economical Excellent adhesion
Conductive Acrylic	.0015	0.038	\$\$	250 (121)	< .010 ohms/sq	Med	to plastics, durable
FR Conductive Acrylic	.002	0.051	\$\$\$\$	250 (121)	< .020 ohms/sq	Low	

^{*} $\$ being less, \$\$ being more

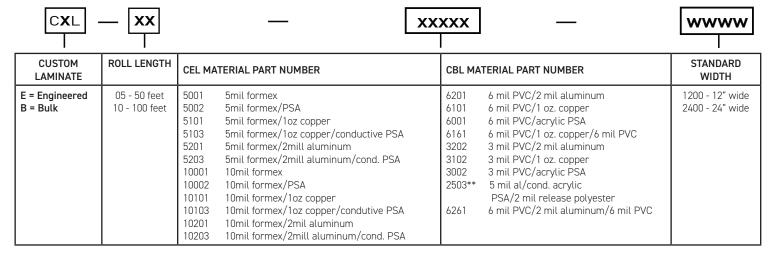

Engineered Laminates - Product Infomation

Table 4 - Value Added - Typical Properties

Material	Thickness inches	Thickness mm	Cost Driver*	Continuous Use Temp °F (°C)	Electrical Resistance	Notes
SOFT-SHIELD® 4850	.039,.059,.078, .118,.157,.197	1, 1.5, 2, 3, 4, 5mm	\$	158 (70)	< .010 ohms/sq	Z-axis electrically conductive, EMI shielding foam
SOFT-SHIELD® 3500, 5000 & 4000	See** Data Sheets		\$	158 (70)	< .010 ohms/sq	EMI shielding fabric-over foam gaskets
Neoprene Sponge	.062125	1.575 - 3.175	\$	158 (70)	-	Non-conductive foam
Poron Foam	.020276	0.5mm - 7.0mm	\$	158 (70)	-	Non-conductive foam
Silicone Sponge	.062125	1.575 - 3.175	\$\$	400 (204)	-	Non-conductive foam, high tem-perature performance
CHO-SEAL® Elastomers	See ** Data Sheet		\$\$\$	Material Specific	Material Specific	Electrically conductive, EMI shielding elastomers
Thermal Interface Materials	See Thermal ** Selector Guide		\$\$\$	Material Specific	Material Specific	Various products to choose from

^{* \$} being less, \$\$\$\$ being more

Ordering Procedure

^{**} Releasable dielectric for easy customization

parker.com/chomerics

CHOMERICS is a registered trademark of Parker Hannifin Corporation. ® 2024

TB 1053 EN February 2024

^{**} Visit www.chomerics.com