

30V N-Channel Enhancement Mode MOSFET

Description

The SX50N03S uses advanced trench technology to provide excellent Rds(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 30V I_D =50 A

 $R_{DS(ON)} < 6m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Electrical Characteristics (Tc=25°Cunless otherwise noted)

Symbol	Parameter	Rating	Units V	
Vos	Drain-Source Voltage	30		
Vgs	Gate-Source Voltage ±20		V	
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	10V ¹ 50		
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	s @ 10V ¹ 10		
Іом	Pulsed Drain Current ²	65		
EAS	Single Pulse Avalanche Energy ³	Single Pulse Avalanche Energy³ 105.8		
las	Avalanche Current	46	А	
PD@Ta=25°C	Total Power Dissipation ⁴	1.5	W	
Тѕтс	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	mperature Range -55 to 150		
Reja	Thermal Resistance Junction-ambient ¹		°C/W	
Rejc	Thermal Resistance Junction-Case ¹ 25		°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30			V
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.028		V/°C
		Vgs=10V , Ip=12A		5.5	6	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=4.5V , Ip=10A		7.2	9	mΩ
V _{GS(th)}	Gate Threshold Voltage		1.2		2.5	V
$^{\triangle}V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , Id =250uA		-6.16		mV/°C
_		V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	•
loss	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	uA
Igss	Gate-Source Leakage Current	VGS=±20V, VDS=0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =12A		47		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7		
Qg	Total Gate Charge (4.5V)			21		
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =10A		7		nC
Qgd	Gate-Drain Charge			6.9		
Td(on)	Turn-On Delay Time			9.6		
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V ,		8.6		
Td(off)	Turn-Off Delay Time	—Rg=3.3		59		ns
Tf	Fall Time	— lb=10A		15.6		
Ciss	Input Capacitance			2295		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		267		pF
Crss	Reverse Transfer Capacitance			210		
l s	Continuous Source Current ^{1,5}				13	Α
Ism	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			65	Α
Vsp	Diode Forward Voltage ²	V _G s=0V , I _S =1A , T _J =25°C			1.2	V
trr	Reverse Recovery Time			12		nS
Qrr	Reverse Recovery Charge	IF=10A , dl/dt=100A/μs , T _J =25°C		4.8		nC

Note:

2

www.sxsemi.com

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.} The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =46A

^{4.}The power dissipation is limited by 150°C junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics of Reverse

Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

3

30V N-Channel Enhancement Mode MOSFET

Typical Characteristics

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data-SOP-8

Symbol	Dimensions I	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0.100	0. 250	0.004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0.013	0.020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0.200
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050 (BSC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)		
TAPING	SOP-8		3000		

5