Supertex inc. # **High-Voltage Ring Generator** #### **Ordering Information** | Operating Voltage | Package Options | |-------------------|-----------------| | V _{NN1} | SOW-16 | | -220V | HV450WG | #### **Features** - Integrated high voltage transistors - ☐ 67V_{RMS} ring signal - Output over current protection - Can drive external MOSFETs for larger loads #### **Applications** - High voltage ring generator - Set-top/Street box ring generator - Pair gain ring generator ### General Description The Supertex HV450 is a PWM high voltage ring generator. The high voltage output P- and N-channel transistors are controlled independently by the logic inputs $P_{\rm IN}$ and $N_{\rm IN}$. For application where a single control pin $(N_{\rm IN})$ is desired, the mode pin should be connected to Gnd. This adds a 200ns deadband on the control logic to avoid cross conduction on the high voltage output. A logic high on $N_{\rm IN}$ will turn the high voltage P-Channel on and the N-Channel off. The outputs can drive up to 5 RENs. The HV450 can drive external MOSFETs for applications requiring larger loads. The IC can be powered down by connecting the enable pin to $V_{\rm DD}$. The high voltage outputs have pulse by pulse over current protection. ### **Absolute Maximum Ratings*** | V _{NN1} , power supply voltage | -240V | |--|-----------------------| | V _{PP} , P-channel gate voltage supply | -20V | | V _{NN2} , N-channel gate voltage supply | V _{NN1} +20V | | V _{DD} , logic supply | +7.5V | | Storage temperature | -65°C to +150°C | | Power dissipation | 600mW | ^{*} All voltages referenced to ground #### **Pin Configuration** # **Electrical Characteristics** (Over operating supply voltages unless otherwise specified, T_A = -40°C to +85°C.) | Symbol | Parameters | Min | Тур | Max | Unit | Conditions | |-------------------|---|------------------------|-----|-------------------------|------|--| | V _{PP} | P-channel linear regulator output voltage | -10 | | -18 | V | | | V _{NN1} | High voltage negative supply | - 220 | | -110 | V | | | V _{NN2} | Negative linear regulator output voltage | V _{NN1} + 6.0 | | V _{NN1} + 10.0 | ٧ | | | V_{DD} | Logic supply voltage | 4.5 | | 5.5 | ٧ | | | I _{NN1Q} | V _{NN1} quiescent current | | 300 | 500 | μA | $P_{IN} = N_{IN} = \overline{EN} = L$ | | | | | | 25 | μΑ | $P_{IN} = N_{IN} = L, \overline{EN} = H$ | | I _{DDQ} | V _{DD1} quiescent current | | 90 | 200 | - μΑ | $P_{IN} = N_{IN} = \overline{EN} = L$ | | | | | 35 | 100 | | $P_{IN} = N_{IN} = L, \overline{EN} = H$ | | I _{NN1} | V _{NN1} operating current | | 1.4 | | mA | No load, V_{OUTP} and V_{OUTN} switching at 100KHz | | I _{DD} | V _{DD} operating current | | | 1.0 | mA | | | I _{IL} | Mode logic input low current | | 25 | | μΑ | Mode = 0V | | V _{IL} | Logic input low voltage | 0 | | 1.0 | V | $V_{DD} = 5.0V$ | | V _{IH} | Logic input high voltage | 4.0 | | 5.0 | V | V _{DD} = 5.0V | #### **High Voltage Output** | Symbol | Parameters | Min | Тур | Max | Unit | Conditions | |---------------------|--|------------------------|-----|------------------------|------|-------------------------------------| | R _{SOURCE} | V _{OUT} P source resistance | | 65 | | Ω | I _{OUT} = 100mA | | R _{SINK} | V _{OUT} P sink resistance | | 65 | | Ω | I _{OUT} = -100mA | | t _{d(ON)} | HV _{OUT} delay time | | 150 | | ns | P_{IN} = high to low, Mode = high | | t _{rise} | HV _{OUT} rise time | | 50 | | ns | P _{IN} = high to low | | t _{d(OFF)} | HV _{OUT} delay time | | 200 | | ns | N_{IN} = low to high, Mode = high | | t _{fall} | HV _{OUT} fall time | | 50 | | ns | N _{IN} = low to high | | t _{db} | Logic deadband time | | 250 | | ns | Mode = low | | V _{psen} | HV _{OUT} current source sense voltage | -1.2 | | -0.8 | V | | | V _{nsen} | HV _{OUT} current sink sense voltage | V _{NN1} + 0.8 | | V _{NN1} + 1.2 | V | | | t _{shortP} | HV _{OUT} off delay time when current source sense is activiated | | 70 | 150 | ns | | | t _{shortN} | HV _{OUT} off delay time when current sink sense is activated | | 70 | 150 | ns | | | t _{whout} | Minimum pulse width for HV _{OUT} at P _{GND} | | | 500 | ns | | | t _{wlout} | Minimum pulse width for HV_{OUT} at V_{NN1} | | | 500 | ns | | ### **Truth Table** | N _{IN} | P _{IN} | Mode | EN | HV_out | |-----------------|-----------------|------|----|-----------------------| | L | L | Н | L | Pgnd | | L | Н | Н | L | High Z | | H* | L* | Н | L | * | | Н | Н | Н | L | V _{NN1} | | L | X | L | L | $V_{_{\mathrm{NN1}}}$ | | Н | X | L | L | Pgnd | | Х | X | X | Н | High Z | ^{*}This state will short $\boldsymbol{V}_{_{\boldsymbol{NN1}}}$ to Pgnd and should therefore be avoided. # **Block Diagram** #### **Pin Description** | V _{PP} | P-channel gate voltage supply. Generated by an internal linear regulator. A $0.1\mu F$ capacitor should be connected between P_{GND} and V_{PP} . | |-------------------|--| | V _{NN1} | Negative high voltage supply. | | V _{NN2} | N-channel gate voltage supply. Generated by an internal linear regulator. A $0.1\mu F$ capacitor should be connected between V_{NN2} and V_{NN1} . | | V_{DD} | Logic supply voltage. | | GND | Low voltage ground. | | P_{GND} | High voltage power ground. | | P _{IN} | Logic control input. When mode is high, logic input high turns OFF output high voltage P-Channel. | | N _{IN} | Logic control input. When mode is high, logic input high turns ON output high voltage N-Channel. | | EN | Logic enable input. Logic low enables IC. | | Mode | Logic mode input. Logic low activates 200nsec deadband. When mode is low, N_{IN} turns on and off the high voltage N- and P-Channels. Pin is not used and should be connected to V_{DD} or ground. | | HV _{OUT} | High voltage output. Voltage swings from P _{GND} to V _{NN1} . | | $V_{\rm psen}$ | Pulse by pulse over current sensing for P-Channel MOSFET. | | V _{nsen} | Pulse by pulse over current sensing for N-Channel MOSFET. | | P _{gate} | Gate drive for external P-channel MOSFET. | | N _{gate} | Gate drive for external N-channel MOSFET. | | | | # **Typical Application Circuit** # **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: Microchip: HV450DB2 HV450DB1