

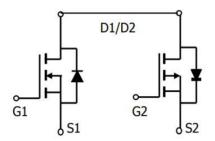
30V N+P-Channel Enhancement Mode MOSFET

Description

The SX30G03GD uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

V_{DS} = 30V I_D =38A


 $R_{DS(ON)} < 12m\Omega$ @ $V_{GS}=10V$

 $V_{DS} = -30V I_{D} = -35A$

 $R_{DS(ON)} < 20m\Omega$ @ V_{GS} =-10V

Application

BLDC

Absolute Maximum Ratings (T_c=25°Cunless otherwise noted)

Symbol	Parameter	N-Ch	P-Ch	Units
Vos	Drain-Source Voltage	30	-30	V
Vgs	Gate-Source Voltage	±20	±20	V
lo@Ta=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	38	-35	А
lo@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	21	-18.1	А
Ірм	Pulsed Drain Current ²	90	-85	Α
EAS	Single Pulse Avalanche Energy ³	22	22	mJ
las	Avalanche Current	28	23	Α
PD@TA=25°C	Total Power Dissipation ⁴	46	46	W
Тѕтс	Storage Temperature Range	-55 to 150		$^{\circ}\!\mathbb{C}$
TJ	Operating Junction Temperature Range	-55 to 150		°C
Reja	Thermal Resistance Junction-Ambient ¹	62.5		°C/W
Rejc	Thermal Resistance Junction-Case ¹	6.0		°C/W

30V N+P-Channel Enhancement Mode MOSFET

N-Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30	33		V
∆BVDSS/∆T J	BVDSS Temperature Coefficient	Reference to 25℃ , I _D =1mA		0.0193		V/°C
DDC(ON)	Static Prain Source On Registence?	V _G s=10V , I _D =30A	8	8.0	12	
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=4.5V , Ip=15A		11	16	mΩ
VGS(th)	Gate Threshold Voltage	V V 1 050 A	1.2	1.6	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =250uA		-3.97		mV/℃
IDOO	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25°C			1	
IDSS		V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	uA
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		34		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω
Q_g	Total Gate Charge (4.5V)			9.8		
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =15A		4.2		nC
Q_{gd}	Gate-Drain Charge			3.6		
Td(on)	Turn-On Delay Time			4		
Tr	Rise Time	V _{DD} =15V , V _{GS} =10V , R _G =3.3Ω		8		
Td(off)	Turn-Off Delay Time	lo=15A		31		ns
Tf	Fall Time			4		
Ciss	Input Capacitance			940		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		131		pF
Crss	Reverse Transfer Capacitance			109		
ls	Continuous Source Current ^{1,5}	\/\/0\/			43	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			112	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1	V
trr	Reverse Recovery Time	IF=30A , dI/dt=100A/μs ,		8.5		nS
Qrr	Reverse Recovery Charge	TJ=25°C		2.2		nC

Note:

- 1、The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2、The data tested by pulsed , pulse width $\leq 300 us$, duty cycle $\leq 2\%$
- 3、The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1Mh,IAS=28A
- 5. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

www.sxsemi.com

30V N+P-Channel Enhancement Mode MOSFET

P-Channel Electrical Characteristics (T_J=25°C, unless otherwise noted)

	2.00th 10th 0 har a 0to 110th 10th (15 20 0	, 4111000 041101 11100 1				
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V(BR)DSS	Drain-Source Breakdown Voltage	Vgs=0V, In= -250µA	-30	-33	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} =0V,	-	-	-1	μΑ
IGSS	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D = -250µA	-1.2	-1.5	-2.5	V
DDC(an)		Vgs= -10V, Ip= -10A -	16	20	_	
RDS(on)	Static Drain-Source on-Resistance note3	V _{GS} = -4.5V, I _D = -5A	-	25	30	mΩ
Ciss	Input Capacitance		-	1250	-	pF
Coss	Output Capacitance	V _{DS} = -15V, V _{GS} =0V,	-	327	-	pF
Crss	Reverse Transfer Capacitance	1-1.0MHZ	_	278	_	pF
Qg	Total Gate Charge	V _{GS} = -4.5V, I _D = -5A V _{DS} = -15V, V _{GS} =0V, f=1.0MHz V _{DS} = -15V, I _D = -9.1A, V _{GS} = -10V	-	30	-	nC
Qgs	Gate-Source Charge		-	5.3	-	nC
Q_{gd}	Gate-Drain("Miller") Charge	Vgs= -10V	_	7.6	_	nC
td(on)	Turn-on Delay Time		-	14	-	ns
tr	Turn-on Rise Time	VDD= -15V, ID= -6A,	-	20	-	ns
td(off)	Turn-off Delay Time	Vgs= -10V, Rgen= 2.5Ω	-	95	-	ns
tf	Turn-off Fall Time		-	65	-	ns
IS	Maximum Continuous Drain to Source Dioc	de Forward Current	-	-	-10	Α
ISM	Maximum Pulsed Drain to Source Did	ode Forward Current	-	-	-40	Α
VSD	Drain to Source Diode Forward Voltage	Vgs=0V, Is= -11A	-	-0.8	-1.2	V

Note

- 1 . The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- $3\$ The EAS data shows Max. rating . The test condition is VDD=-25V,VGS=-10V,L=0.1mH,IAS=-23A
- 4 . The power dissipation is limited by 150 ℃ junction temperature
- 5. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

N-Typical Characteristics

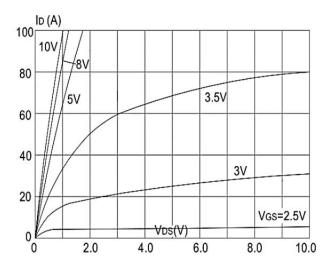


Figure1: Output Characteristics

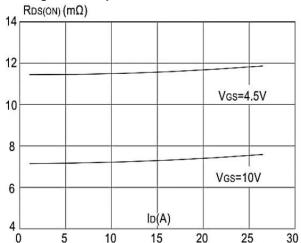


Figure 3:On-resistance vs. Drain Current

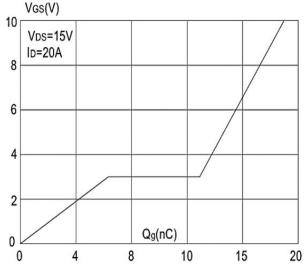
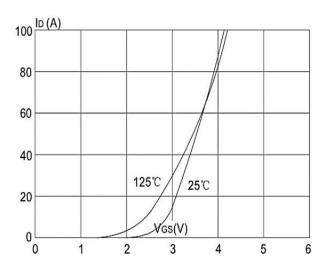



Figure 5: Gate Charge Characteristics

30V N+P-Channel Enhancement Mode MOSFET

Figure 2: Typical Transfer Characteristics

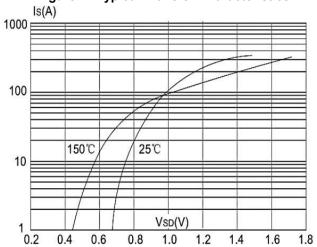


Figure 4: Body Diode Characteristics

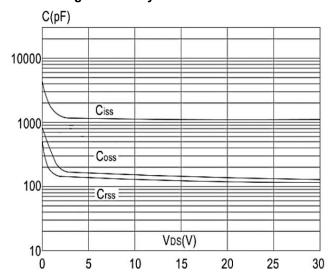


Figure 6: Capacitance Characteristics

N-Typical Characteristics

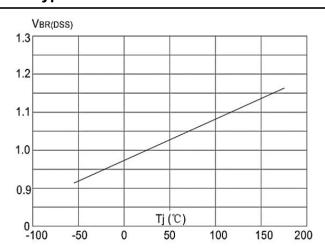


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

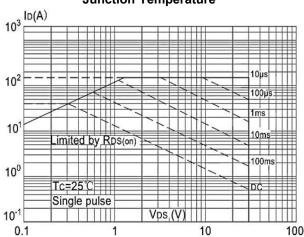


Figure 9: Maximum Safe Operating Area
Temperature

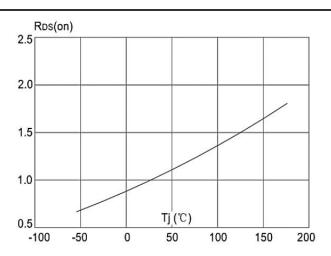


Figure 8: Normalized on Resistance vs.

Junction Temperature

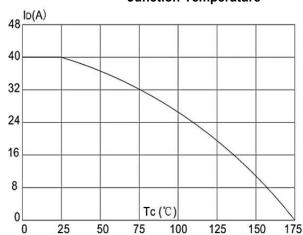


Figure 10: Maximum Continuous Drain Current vs. Ambient

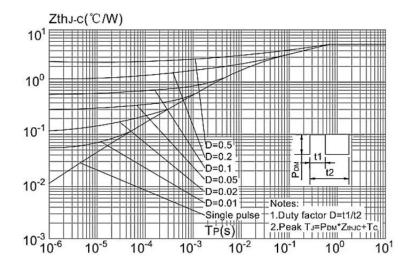
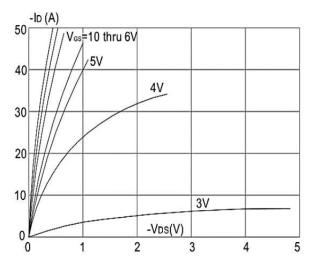
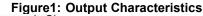




Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

P-Channel Typical Characteristics

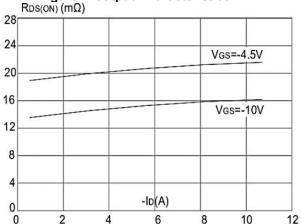


Figure 3:On-resistance vs. Drain Current

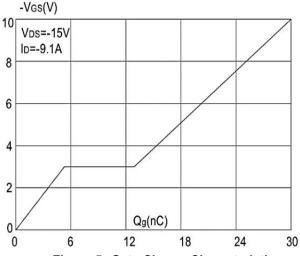


Figure 5: Gate Charge Characteristics

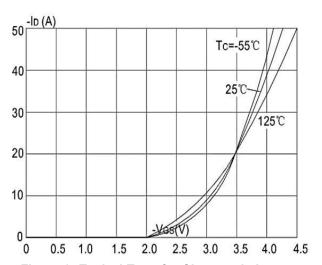


Figure 2: Typical Transfer Characteristics

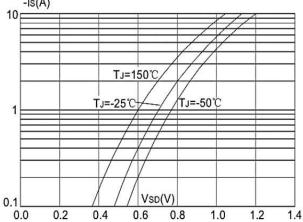
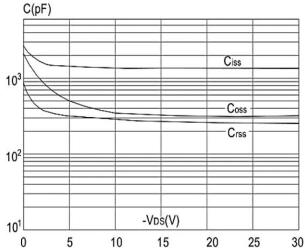



Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

P-Channel Typical Characteristics

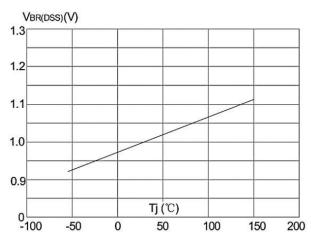


Figure 7: Normalized Breakdown Voltage vs.
Junction Temperature

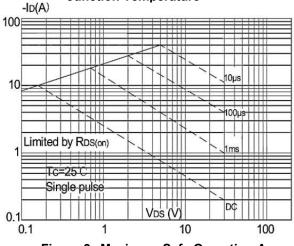


Figure 9: Maximum Safe Operating Area

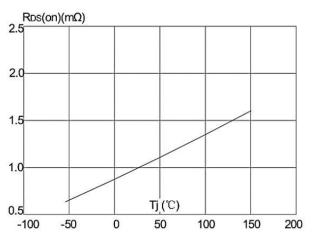


Figure 8: Normalized on Resistance vs. Junction Temperature

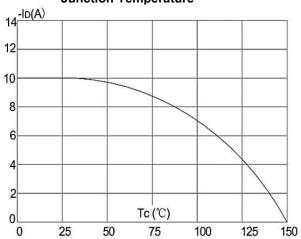
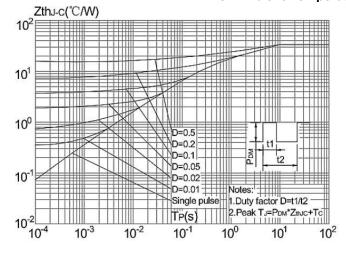
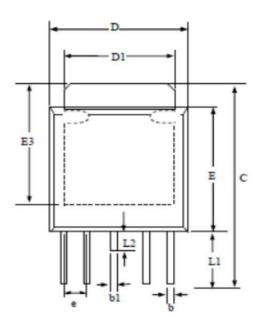
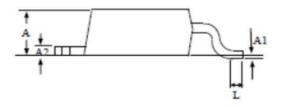


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature




Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient


7

Package Mechanical Data:TO-252-4L

SYMBOLS	Millimeters			
311.2023	MIN	NOM	MAX	
D	6.30	6.55	6.80	
D1	4.80	5.35	5.90	
С	9.30	9.75	10.20	
Е	5.30	5.80	6.30	
E3	4.50	5.15	5.80	
L	0.90	1.35	1.80	
Ll	2.00	2.53	3.05	
L2	0.50	0.85	1.20	
ь	0.30	0.50	0.70	
bl	0.40	0.60	0.80	
A	2.10	2.30	2.50	
A2	0.40	0.53	0.65	
A1	0.00	0.10	0.20	
6	1.20	1.30	1.40	

- 1.All Dimensions Are in Millimeters.
- 2. Dimension Does Not Include Mold Protrusions.

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	TO-252-4L		2500

8