Descriptions

FSA4480UCX is a high performance USB Type-C switch combo of High-Speed Data, Hi-Fi Audio and Side Band Use(SBU). The Audio path is capable of wide audio swing and results in ultra-low distortion. With excellent THD+N performance and wide frequency response, FSA4480UCX is an ideal device for Hi-Fi system application. The USB path of wide bandwidth has very low bit-to-bit skew and channel-to-channel cross-talk, and it is compatible with high-speed USB 2.0 eye diagram and maintains good signal integrity.

The Side Band Use (SBU) configures internal switches to Ground and MIC connections on headset. GND sense path supports quasi-differential amplifier architectures, which reduces cross-talk and improves sound quality. SBU ports can also be configured to deliver eDP AUX signal.

FSA4480UCX incorporates High Voltage Protection (OVP) to both SBU and USB ports on Type-C receptacle side. Both GPIO and I2C controls are 1.8V logic compatible. 25-Ball Wafer Level Chip Scale Package (WLCSP) 2.04mm x 2.04mm with Pb-free and Halogen-free, makes it ideal for mobile device.

Features

- Wide VCC Supply Range (2.5v~25v) can be powered by either LDO or VBUS
- USB Path Insertion loss: -1dB@430MHz, -2dB@930MHz, -3dB@1.4GHz
- Hi-Fi Audio Path: THD+N=-110dB, 0.707Vrms, f=100Hz, 32Ω Load,
- Audio Path Insertion loss: -1dB@500MHz, -2dB@860MHz, -3dB@1.2GHz
- In-Built OVP to both DC 16V-tolerant SBUx/GSBUx ports and DC 17V-tolerant DP_R/DN_L ports on Type-C receptacle
- IEC 64000-4-5 Surge Protection w/o External TVS: DP_R/DN_L ports 20V, SBUx/GSBUx ports: 80V
- OMTP and CTIA Pinout Support and Audio Sense Path for Quasi Differential Configuration
- Audio Path Soft Turn-On/Off for Pop & Click Elimination
- Power-off Truly Isolated and Noise Removal
- Configurable to Deliver eDP AUX Signal

Applications

USB Type-C Receptacle, 4G/5G Smart Phone, Mobile and Al Device

Order Information

Part Number	Pack	age
FSA4480UCX	CSP-25	Tape and Reel

Functional Diagram

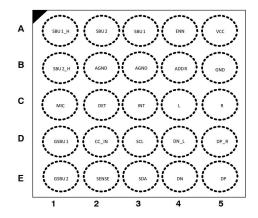
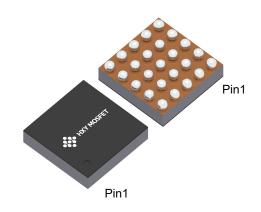




Fig.1 Functional Diagram

Pin Configuration

CSP-25

Pin Descriptions

Pin#	Name	Туре	Description
A5	VCC	PWR	2.5~25V Positive Supply
B5	GND	GND	Primary Ground Connection. Must be Connected to System Ground
D5	DP_R	I/O	Right Audio / Positive USB2.0 Data Common Line
D4	DN_L	I/O	Left Audio / Negative USB2.0 Data Common Line
E5	DP	I/O	Positive USB2.0 Data Line
E4	DN	I/O	Negative USB2.0 Data Line
C5	R	I/O	Right Line for Audio Signals
C4	L	I/O	Left Line for Audio Signals
А3	SBU1	I/O	Sideband Use wire 1
A2	SBU2	I/O	Sideband Use wire 2
C1	MIC	0	Analog Audio Microphone
B2	AGND2	GND	Analog Ground 2
В3	AGND1	GND	Analog Ground 1
E2	SENSE	0	Analog Ground Sense Return
C3	INT	0	Open Drain Interrupt Output
D2	CC_IN	I	Audio Accessory Attachment Detection Input
D1	GSBU1	I/O	Star-connection with SBU1 to Headset Jack as Audio Ground Sense Path 1
E1	GSBU2	I/O	Star-connection with SBU2 to Headset Jack as Audio Ground Sense Path 2
C2	DET	0	Push-pull output. DET changes status in response to CC_IN voltage level.
D3	SCL	I	I2C Clock wire
E3	SDA	I/O	I2C Data wire
B1	SBU2_H	I	System Side Sideband Use wire 2, can be configured as eDP AUX path
A1	SBU1_H	I	System Side Sideband Use wire 1, can be configured as eDP AUX path
A4	ENN	I	Chip Enable, Active Low, Internal Pull-Down by 470KΩ
B4	ADDR	I	I2C Slave Address

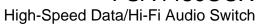
Table-1 Pin Descriptions

FSA4480UCX High-Speed Data/Hi-Fi Audio Switch

Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1)

		Range	Unit
Power Supply Voltage	VCC	-0.5 ~ 25	V
Central Dina	SCL, SDA, ADDR, ENN, INT_N	-0.5 ~ 6.5	V
Control Pins	CC_IN	-0.5 ~ 25	V
	DP_R, DN_L	-3.3 ~ 17	V
Signal Pins	L, R, DP, DN, MIC, SENSE, SBU1_H, SBU2_H	-0.3 ~ 6.5	V
	SBU1, GSBU1, SBU2, GSBU2	-0.3 ~ 16	V
Storage Temperature Range	TSTG	-55 ~ 150	οС
	VCC	±8	kV
ESD HBM, ANSI/	SCL, SDA, ADDR, ENN, INT_N	±8	kV
ESDA/JEDEC	CC_IN	±8	kV
JS-001-2012	DP_R, DN_L	±8	kV
	L, R, DP, DN, MIC, SENSE, SBU1_H, SBU2_H	±8	kV
	SBU1, GSBU1, SBU2, GSBU2	±8	kV
	VCC	±400	V
	SCL, SDA, ADDR, ENN, INT_N	±400	V
ECD MM JECDOO A445	CC_IN	±400	V
ESD MM, JESD22-A115	DP_R, DN_L	±300	V
	L, R, DP, DN, MIC, SENSE, SBU1_H, SBU2_H	±400	V
	SBU1, GSBU1, SBU2, GSBU2	±800	V
ESD CDM, JESD22-C101	All Pins	±1500	V

Table-2 Absolute Maximum Ratings


Recommend Operating Conditions

		Range	Unit
Power Supply Voltage	VCC	2.7 ~ 20	V
Control Pins	SCL, SDA, ADDR, ENN, INT_N	0 ~ 5.0	V
Control Pins	CC_IN	0 ~ 20	V
	L, R, DP_R, DN_L	-3.6 ~ 5.0	V
Signal Pins	DP, DN, MIC, SENSE, SBU1_H, SBU2_H	0 ~ 5.0	V
	SBU1, GSBU1, SBU2, GSBU2	0 ~ 3.6	V
Operating Temperature	T _A	-40 ~ 85	οС

Table-3 Recommend Operating Conditions

(1) In USB mode, any signal applied to the off-state audio inputs R, L may not swing below ground or above 1V

Stresses beyond those listed in Table-2 Absolute Maximum Ratings may cause permanent damage to the device. They are stress ratings only, which do not imply functional operation of the device at these or any other conditions. Beyond those indicated under Recommended Operating Conditions, exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Electrical Characteristics (Ta=25°C, VCC=3.3V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Power Supplies						I.
Under Voltage Lock Out (UVLO)	V _{UVLO}		2.2	2.4	2.6	V
UVLO Hysteresis	V _{UVLO-HYS}		150	200	250	mV
•	0,10,1110	ENN=H, All switches off		180		uA
		USB switches on		180		uA
VCC Quiescent Current	I_{Q}	Audio switches on along				
		with MIC and SENSE		270		uA
Digital I/O		switches on			1	I
Input logic high	V _{IH}	VCC=3.3~20V	1.6		5.5	V
Input logic low	V _{IL}	VCC=3.3~20V	-0.1		0.5	V
INT Internal pull-up resistor	R _{UP-INT}			2		МΩ
CC_IN Internal pull-up resistor	R _{UP-CC}			2		МΩ
SCL, SDA Internal pull-up resistor	R _{UP-I2C}			2		МΩ
ADDR Internal pull-down resistor	R _{DN-ADDR}			2		МΩ
ENN Internal pull-down resistor	R _{DN-ENN}			470		kΩ
Audio Switch On Resistance						
On-Resistance	R _{AUDIO}	V _{IS} = -3.3V~+3.3V I _{OUT} =30mA		1.3		Ω
R _{ON} Flatness ⁽¹⁾	R _{FLAT(A)}	V _{IS} = -3.3V~+3.3V I _{OUT} =30mA		0.01		Ω
R _{ON} Matching Between Channels ⁽²⁾	$\Delta R_{ON(A)}$	V _{IS} = -3.3V~+3.3V I _{OUT} =30mA		0.02		Ω
Audio Switch Dynamics						
		f=20Hz to 22KHz, A-weighted		-106		dB
Total Harmonic Distortion	THD+N	V_{IS} =1 V rms @ R_L =1 $k\Omega$				ub
Total Haimonic Distortion	THD+N₁	f=20Hz to 22kHz, A-weighted	-110	-103		dB
		V_{IS} =0.7Vrms @RL=32 Ω	-110	-103		uБ
Signal-to-Noise Ratio	SNR₁	f=20Hz to 22KHz,		>120		dBrA
Signal-to-Noise Italio	SINIX ₁	Inputs grounded @R _L =32Ω	>120			UDIA
Audio Switches OFF Isolation	OIRR	f=20Hz to 22KHz,		-91		dB
Addio Owitories Of F Isolation	Oliviv	$V_L = V_R = 0.3 Vrms @R_L = 32\Omega$		-51		ub
Audio Switches Crosstalk (3)		f=20Hz to 22KHz,				
(Channel-to-Channel)	ACRX	$V_{L \text{ or R}} = 0.3 \text{Vrms } @R_L = 32\Omega$		-115		dB
(Griannier to Griannier)		Source Impedance= $0\Omega R_L = 1k\Omega$				
Audio Switch -3dB Bandwidth	BW_{Audio}	R _L =50Ω		1.2		GHz
AUDIO Switch Turn-on Time	t _{ON-A}	V_{IS} = 50mV R _L =32 Ω		60		mS
AUDIO Switch Turn-off Time	t _{OFF-A}	V_{IS} = 50mV R _L =32 Ω		5		mS
USB Switch On Resistance					i	1
On-Resistance	Rusa	$V_{IS} = 0V \sim 0.4V$, $I_{ON} = 8mA$		3.5		Ω
R _{ON} Flatness	R _{FLAT(U)}	$V_{IS} = 0V \sim 3.3V$, $I_{ON} = 8mA$		4.8		Ω
R _{ON} Matching Between Channels	$\Delta R_{ON(U)}$	$V_{IS} = 0V \sim 0.4V$, $I_{ON} = 8mA$		0.2		Ω
USB Switch Dynamics			1			1
USB Switch On Capacitance	C _{ON}	$V_{Bias} = 0.2V, f = 1MHz$		4		pF
USB Switch Off Capacitance	C_{OFF}	$V_{Bias} = 0.2V$, $f = 1MHz$		3		pF

High-Speed Data/Hi-Fi Audio Switch

USB Switch Off Isolation	Off _{USB}	$f = 100MHz, R_T = 50\Omega, C_L = 0pF$		-46		dB
USB Switches Crosstalk	ODV	6 400MU- D 500 0 0 5		47		I.D.
(Channel-to-Channel)	CKX _{USB}	f = 100MHz, R_T = 50Ω, C_L = 0pF		-47		dB
USB Switch -3dB Bandwidth	BW _{USB}	R_T =50 Ω , C_L =0pF Signal Power 0dBm		1.4		GHz
DP_R, DN_L Ports Over-Vol	tage Prote	ection				
OVP Lockout Threshold	$V_{\text{COM-OVP}}$	Rising Edge	4.6	4.8	5.0	V
OVP Hysteresis	V _{COM-HYS}			400		mV
GSBU1, GSBU2 Over-Voltage I	Protection					
OVP Lockout Threshold	$V_{\text{SBU-OVP}}$	Rising Edge	4.6	4.8	5.0	V
OVP Hysteresis	V _{SBU-HYS}			400		mV
Audio Ground Switches ON	RESISTAN	CE				
AGND-to-SBUx On-Resistance	R _{AGND}	I _{AGND} = 100 mA		60		mΩ
MIC Switch						
MIC Switch On-Resistance	R _{MIC}	V _{IS} = 0V~2.0V, I _{ON} = 10mA		2.1		Ω
MIC Switch RON Flatness	R _{FLAT(MIC)}	V _{IS} = 0V~2.0V, I _{ON} = 10mA		1		Ω
MIC Switch -3dB Bandwidth	BW _{MIC}	R _L =50Ω, GSBUx ties to SBUx		24		MHz
MIC Switch Off Isolation	Off _{MIC}	$f = 100MHz, R_T = 50\Omega$		-48		dB
MIC Switch Turn-on Time	t _{ON-M}	GSBUx = $2.0V R_L = 1k\Omega$		200		uS
MIC Switch Turn-off Time	t _{OFF-M}	GSBUx = $2.0V R_L=1k\Omega$		2		uS
SENSE Switch				•		
SENSE Switch On-Resistance	R _{SENSE}	V _{IS} = 0V~50mV, I _{ON} = 10mA		0.4		Ω
SENSE Switch -3dB Bandwidth	BW _{SENSE}	R _L =50Ω, GSBUx ties to SBUx		21		MHz
SENSE Switch Off Isolation	Offsense	$f = 100MHz, R_T = 50Ω$		-47		dB
SENSE Switch Turn-on Time	t _{ON-S}	GSBUx = 50 mV R _L = 1 k Ω		200		uS
SENSE Switch Turn-off Time	t _{OFF-S}	GSBUx = 50 mV R _L = 1 k Ω		2		uS
SBUx_H Switch			•			
SBUx_H Switch On-Resistance	R _{SBUx_H}	V _{IS} = 0V~0.4V, I _{ON} = 10mA		7		Ω
SBUx_H Switch RON Flatness	R _{FLAT(SBU_H)}	V _{IS} = 0V~3.3V, I _{ON} = 10mA		2		Ω
SBUx_H Switch -3dB Bandwidth	BW _{SBU_H}	R _L =50Ω, GSBUx ties to SBUx		21		MHz
SBUx_H Switch Off Isolation	Off _{SBU_H}	$f = 100MHz, R_T = 50Ω$		-51		dB

Table-4 Electrical Characteristics

Note:

- (1) Flatness is defined as the difference between maximum and minimum value of ON-resistance at the specified analog signal voltage points.
- (2) Ron matching between channels is calculated by subtracting the channel with the lowest max Ron value from the channel with the highest max Ron value.
- (3) Crosstalk is inversely proportional to source impedance

I2C Controlling:

FSA4480UCX switching functions are controlled by 2 I2C pins: SCL and SDA pin. The timing characteristics and diagrams, as well as internal register meaning and usage are listed below:

I2C Timing Diagrams

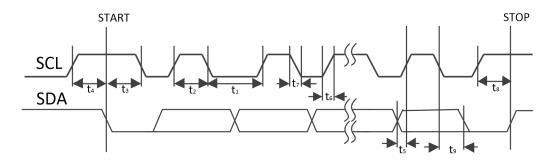


Fig.4 I2C Timing Diagrams

Note: Each of SDA and SCL pins should be pulled up by a $2.2k\Omega$ resistor.

I2C Timing Characteristics

(Ta=25°C, VCC=3.3V, unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
SCL Frequency	f _{CLK}				400	kHz
SCL Low Pulse-Width	t ₁		1.3			us
SCL High Pulse-Width	t ₂		0.6			us
Hold Time (Start Condition)	t ₃		0.6			us
Setup Time (Start Condition)	t ₄		0.6			us
Data setup time	t ₅		0.1			us
SDA, SCL Rise Time	t ₆				0.3	us
SDA, SCL Fall Time	t ₇				0.3	us
Setup Time (Stop Condition)	t ₈		0.6			us
Data Hold Time	t ₉				0.9	us
Pulse Width of Spikes being Suppressed	t _{ps}				5	ns

Table-5 I2C Timing Characteristics

I2C Slave Address

ADDR	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADDR=L	1	0	0	0	0	1	0	R/W
ADDR=H	1	0	0	0	0	1	1	R/W

Table-6 I2C Slave Address

Mode Register

Address: 0x01

Reset Value: 8'b 0000_0000

Type: Read/Write

	T Caa, v v i i c		
Bits	Name	Size	Description
[7:3]	Reserved	5	Do Not Use
			000: DN_L to DN switch ON, DP_R to DP switch ON
			SBU1 to SBU1_H switch ON, SBU2 to SBU2_H switch ON
			001: DN_L to DN switch ON, DP_R to DP switch ON
			SBU1 to SBU2_H switch ON, SBU2 to SBU1_H switch ON
	Switch		010: DN_L to L switch ON, DP_R to R switch ON, AGND2 to SBU2
[2:0]	Mode	3	switch ON MIC to GSBU1 switch ON, SENSE to GSBU2 switch ON
			011: DN_L to L switch ON, DP_R to R switch ON,AGND1 to SBU1 switch
			ON MIC to GSBU2 switch ON, SENSE to GSBU1 switch ON
			100: All switches OFF
			101: All switches OFF
			110: All switches OFF
			111: AGND1 to SBU1 switch ON, AGND2 to SBU2 switch ON

Table-7 Mode Register

Manual and Interrupt Register

Address: 0x02

Reset Value: 8'b 0000_0000

Type: Read/Write

Bits	Name	Size	Description		
[7:2]	Reserved	6	o Not Use		
1	Manual	1	0: Switch Status is controlled by Mode Register 0x01		
			1: Switch Status is controlled by 3-bit GPIO (ENN, ADDR, INT)		
0	INTC	1	0: Enable interrupt feature		
			1: Disable interrupt feature		

Table-8 Manual and Interrupt Register

DET Direction Register

Address: 0x03

Reset Value: 8'b 0000_0000

Type: Read/Write

Bits	Name	Size	Description
[7:1]	Reserved	7	Do Not Use
0	DET	1	0: DET goes high when CC_IN <1.2v , DET goes low when CC_IN >1.5v
			1: DET goes low when CC_IN <1.2v , DET goes high when CC_IN >1.5v

Table-9 DET Direction Register

DET Register

Address: 0x04

Reset Value: 8'b 0000_0000

Type: Read/Write

Bits	Name	Size	Description
[7:1]	Reserved	7	Do Not Use
0	DET	1	0: DET Direction is controlled by DET Direction Register 0x03
			1: DET remains high, independent of CC_IN

Table-10 DET Register

Manual Mode Control

The function is active during control Register 0x02 bit[1] = 1. It will provide manual control for device. During this configuration, ADDR and INT pins will be set as logic control input

vcc	ENN	ADDR	INT	SENSE	USB	Audio	MIC/GND	SBU
				switch	switch	switch	switch	switch
OFF	X	X	X	OFF	OFF	OFF	SBU1 to AGND1	OFF
							SBU2 to AGND2	
ON	H	X	X	OFF	OFF	OFF	OFF	OFF
ON	٦	L	L	OFF	DP_R to DP	OFF	OFF	SBU1 to SBU1_H
					DN_L to DN			SBU2 to SBU2_H
ON	L	L	Н	OFF	DP_R to DP	OFF	OFF	SBU1 to SBU2_H
					DN_L to DN			SBU2 to SBU1_H
ON	L	Н	L	SENSE to GSBU2	OFF	DP_R to R	MIC to GSBU1	OFF
						DN_L to L	SBU2 to AGND2	
ON	L	Н	Н	SENSE to GSBU1	OFF	DP_R to R	MIC to GSBU2	OFF
						DN_L to L	SBU1 to AGND1	
ON	Н	L	L	OFF	OFF	OFF	OFF	OFF
ON	Н	L	Н	OFF	OFF	OFF	OFF	OFF
ON	Н	Н	L	OFF	OFF	OFF	OFF	OFF
ON	Н	Н	Н	OFF	OFF	OFF	SBU1 to AGND1	OFF
							SBU2 to AGND2	

Table-11 Manual Mode Control

Typical Performance Curves (Ta=25°C, VCC=3.3V, CAP=0.1uF, unless otherwise noted)

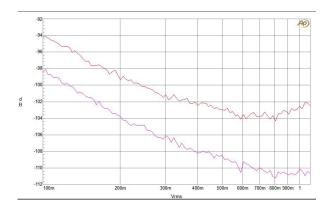


Fig.5 wi/wo A-Weighted Audio Switch THD+N vs Signal Swing @RL=32 Ω f=100Hz

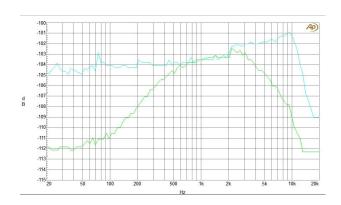


Fig.6 wi/wo A-Weighted Audio Switch THD+N vs Frequency @RL=32 Ω Vs=0.7Vrms

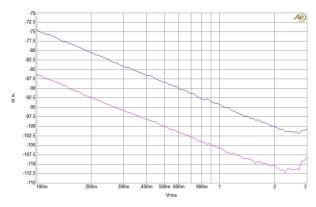


Fig.7 wi/wo A-Weighted Audio Switch THD+N vs Signal Swing @RL=1KΩ f=100Hz

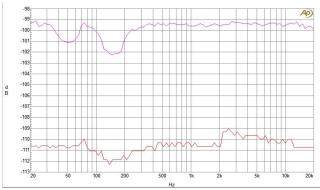


Fig.8 wi/wo A-Weighted Audio Switch THD+N vs Frequency @RL=1KΩ Vs=2.3Vrms

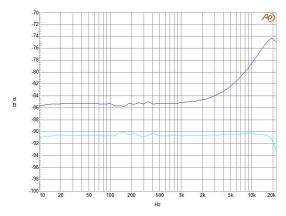


Fig.9 Audio Switch OFF-Isolation vs Frequency @RL=32 Ω /1K Ω Vs=0.3Vrms

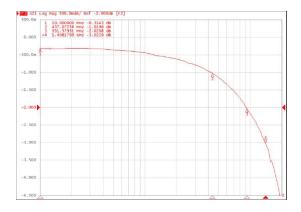


Fig.10 USB Switch Bandwidth

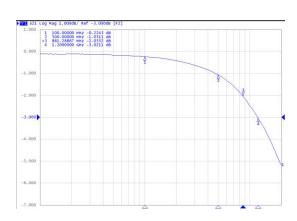


Fig.11 AUDIO Switch Bandwidth

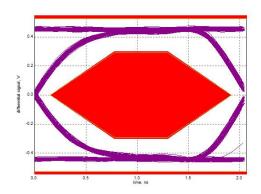


Fig.12 USB2.0 Eye Diagram of Signal Path without Switch

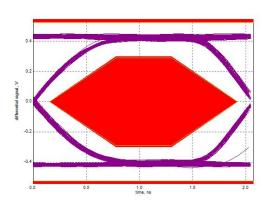


Fig.13 USB2.0 Eye Diagram of Signal Path with FSA4480UCX

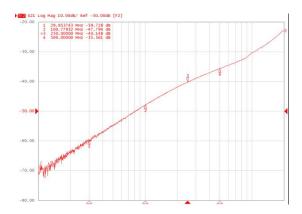


Fig.14 USB Switches Channel-to-Channel Crosstalk

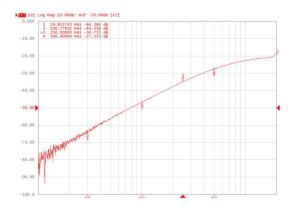


Fig.15 USB Switch OFF-Isolation

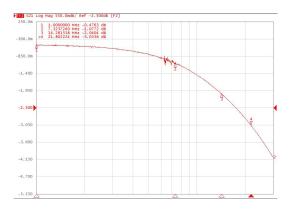


Fig.16 SBUx-to-SBUx_H Switch Insertion Loss

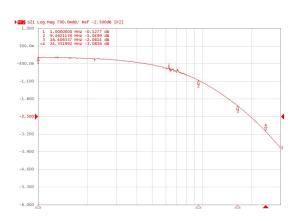


Fig.17 GSBUx-to-MIC Switch Insertion Loss

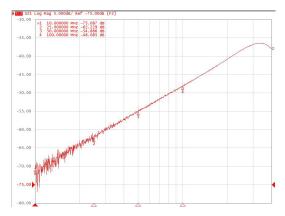


Fig.18 MIC Switch OFF Isolation

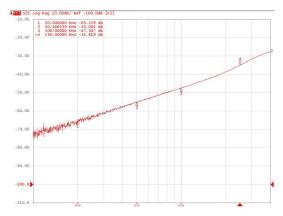


Fig.19 SENSE Switch OFF Isolation

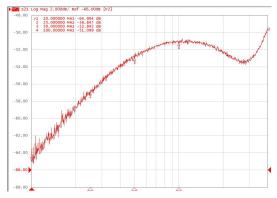


Fig.20 SBUx_H Switch OFF Isolation

Package Outline Dimensions

CSP-25

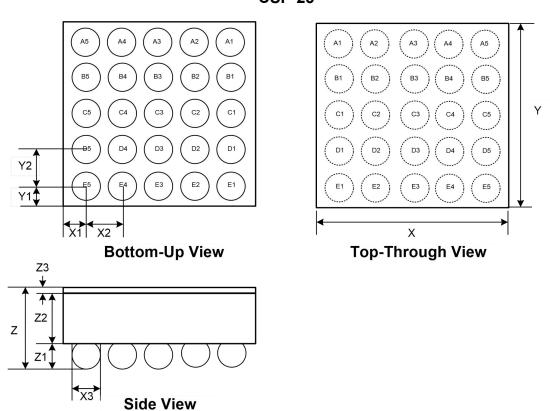


Fig.21 Package Outline Dimensions

Cumb al	Dimensions In Millimeter				
Symbol	Min.	Тур.	Max.		
X	2.01	2.04	2.07		
Υ	2.01	2.04	2.07		
X1		0.18			
X2		0.40			
X3	0.175	0.205	0.235		
Y1		0.18			
Y2		0.40			
Z	0.550	0.600	0.650		
Z1	0.145	0.170	0.195		
Z2	0.340	0.365	0.390		
Z3	0.395	0.040	0.045		

Table-12 Package Outline Dimensions

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.