

30V N+P-Channel Enhancement Mode MOSFET

Description

The SX10G03S uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a

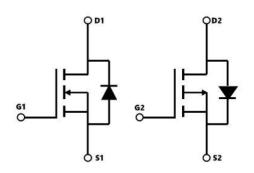
Battery protection or in other Switching application.

General Features

V_{DS} = 30V I_D =12 A

 $R_{DS(ON)} < 12m\Omega$ @ Vgs=10V

 $V_{DS} = -30V I_{D} = -9.8 A$


 $R_{DS(ON)} < -25m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25[°]C unless otherwise noted)

		Rati	ing		
Symbol	Parameter	N-Ch	P-Ch	Units	
Vos	Drain-Source Voltage	30	-30	V	
Vgs	Gate-Source Voltage	±20	±20	V	
l b@Ta=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	10V ¹ 12 -9.8		А	
l b@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	rrent, V _{GS} @ 10V ¹ 8.5 -7.2		Α	
Ірм	Pulsed Drain Current ²	36 -32		Α	
EAS	Single Pulse Avalanche Energy³	24	72	mJ	
las	Avalanche Current	22	-38	Α	
Pb@Ta=25°C	Total Power Dissipation ⁴	1.5	1.5	W	
Тѕтс	Storage Temperature Range	-55 to 150	-55 to 150	${\mathbb C}$	
TJ	Operating Junction Temperature Range	-55 to 150 -55 to 150		${\mathbb C}$	
Reja	Thermal Resistance Junction-Ambient ¹	85		°C/W	
Rejc	Thermal Resistance Junction-Case ¹		25	°C/W	

N-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30			V	
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.023		V/°C	
		Vgs=10V , Ip=8A			12		
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=4.5V , Ip=6A			18	mΩ	
V _G S(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	1.2		2.5	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient			-5.08		mV/℃	
		V _D s=24V , V _G s=0V , T _J =25°C			1		
loss	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	uA	
Igss	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	Vps=5V , Ip=8A		24		S	
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.8		Ω	
Qg	Total Gate Charge (4.5V)			9.63			
Qgs	Gate-Source Charge	V _{DS} =15V , V _{GS} =4.5V , I _D =8A		3.88		nC	
Qgd	Gate-Drain Charge			3.44			
Td(on)	Turn-On Delay Time			4.2			
Tr	Rise Time	V _{DD} =15V , V _G s=10V ,		8.2			
Td(off)	Turn-Off Delay Time	Rg=1.5 		31		ns	
Tf	Fall Time			4			
Ciss	Input Capacitance			940			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		131		pF	
Crss	Reverse Transfer Capacitance			109			
ls	Continuous Source Current ^{1,5}				9	Α	
lsм	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			36	Α	
VsD	Diode Forward Voltage ²	V _G s=0V , I _S =1A , T _J =25℃			1	V	
trr	Reverse Recovery Time			8		nS	
Qrr	Reverse Recovery Charge	⊢lF=8A , dl/dt=100A/μs , TJ=25℃		2.9		nC	

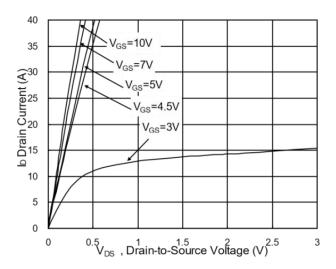
Note:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leqq 300us , duty cycle \leqq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1 mH, I_{AS} =21A
- 4 .The power dissipation is limited by 150°C junction temperature
- 5.The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

2

P-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVoss	Drain-Source Breakdown Voltage	Vgs=0V , Ip=-250uA	-30			V	
△BVpss/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, lo=-1mA		-0.022		V/°C	
		Vgs=-10V , Ip=-6A			25		
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=-4.5V , Ip=-4A			42	mΩ	
VGS(th)	Gate Threshold Voltage		-1.0		-2.5	V	
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	Vgs=Vds , Id =-250uA		4.6		mV/℃	
		V _D s=-24V , V _G s=0V , T _J =25℃			-1		
loss	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	· uA	
lgss	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-6A		17		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		13			
Qg	Total Gate Charge (-4.5V)			12.6			
Qgs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-4.5V , I _D =-6A		4.8		nC	
Qgd	Gate-Drain Charge			4.8			
Td(on)	Turn-On Delay Time			4.6			
Tr	Rise Time	V _{DD} =-15V , V _{GS} =-10V ,		14.8			
Td(off)	Turn-Off Delay Time	Re=3.3 ,		41		ns	
Tf	Fall Time	D0A		19.6			
Ciss	Input Capacitance			1345			
Coss	Output Capacitance	 V _{DS} =-15V,V _{GS} =0V,f=1MHz		194		pF	
Crss	Reverse Transfer Capacitance			158			
ls	Continuous Source Current ^{1,5}				-6.5	Α	
Ism	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			-26	Α	
Vsp	Diode Forward Voltage ²	V _G s=0V , I _S =-1A , T _J =25℃			-1.2	V	


Note:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZcopper.
- 2.The data tested by pulsed , pulse width \leqq 300us , duty cycle \leqq 2%
- 3. The EAS data sh. The power dissipation is limited by ows Max. rating
- 4. The test condition is V150°C junction temperatureDD=-25 V,VGS=-10V,L=0.1mH,IAS=-30A
- 5 .The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

3

www.sxsemi.com

Fig.1 Typical Output Characteristics

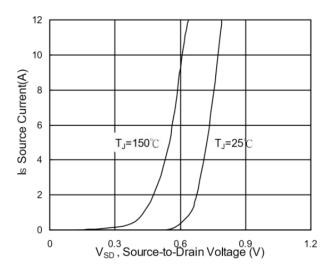


Fig.3 Forward Characteristics of Reverse

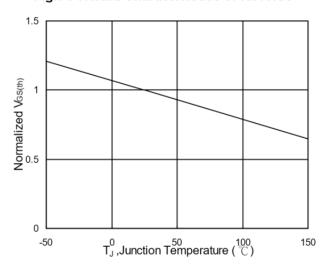


Fig.5 Normalized $V_{GS(th)}$ vs. T_J

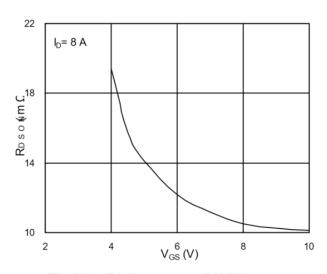


Fig.2 On-Resistance vs. G-S Voltage

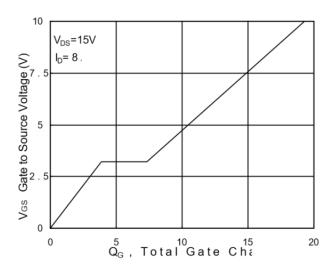


Fig.4 Gate-Charge Characteristics

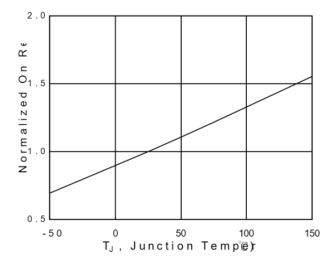


Fig.6 Normalized R_{DSON} vs. T_{J}

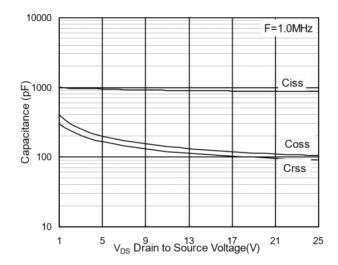


Fig.7 Capacitance

Fig.8 Safe Operating Area

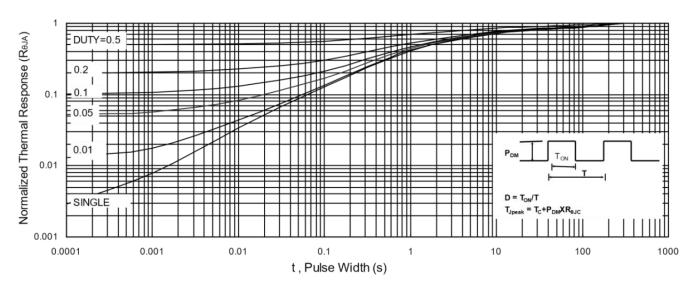
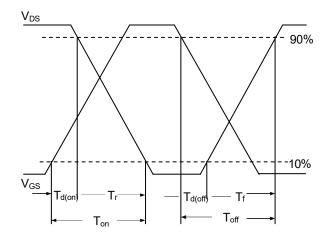
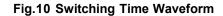




Fig.9 Normalized Maximum Transient Thermal Impedance

5

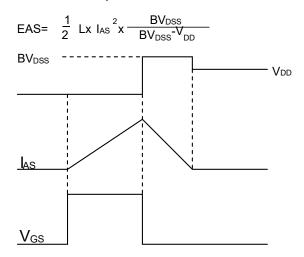


Fig.11 Unclamped Inductive Switching Waveform

www.sxsemi.com

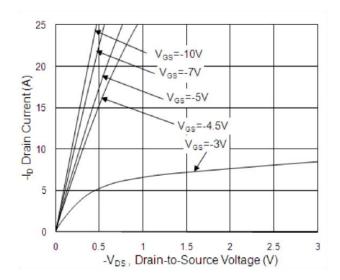


Fig.1 Typical Output Characteristics

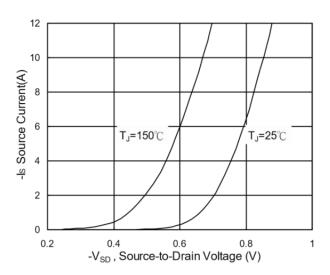


Fig.3 Forward Characteristics of Reverse

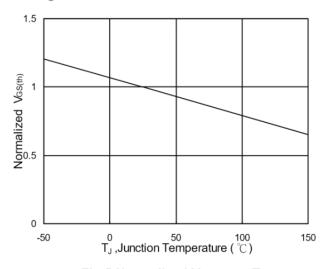


Fig.5 Normalized V_{GS(th)} v.s T_J

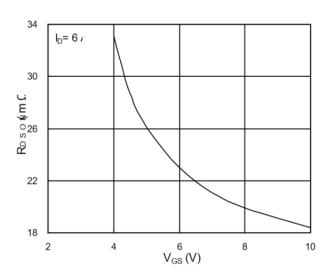


Fig.2 On-Resistance v.s Gate-Source

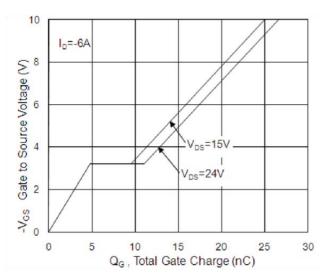


Fig.4 Gate-Charge Characteristics

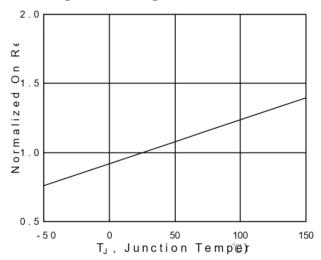


Fig.6 Normalized R_{DSON} v.s T_J

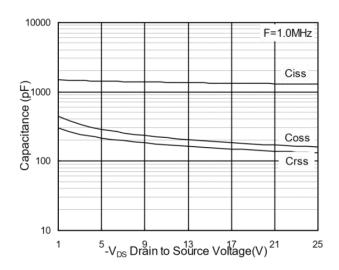


Fig.7 Capacitance

Fig.8 Safe Operating Area

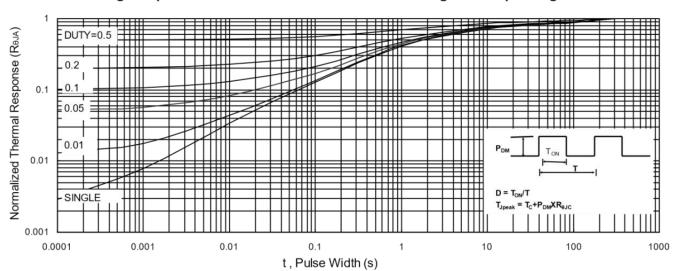
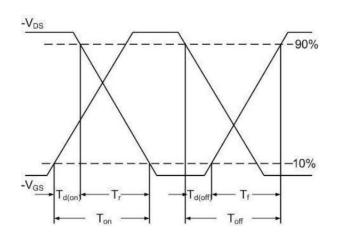
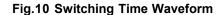
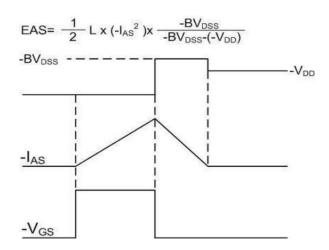
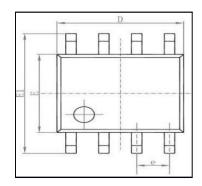
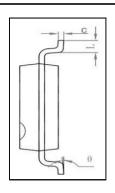
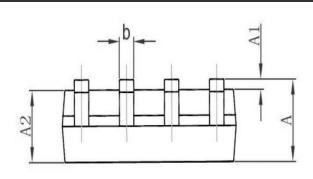
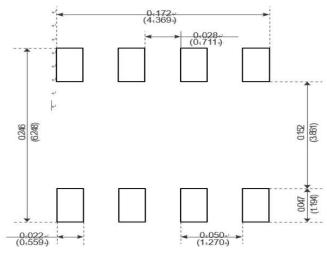




Fig.9 Normalized Maximum Transient Thermal Impedance


Fig.11 Unclamped Inductive Switching Waveform


MOSFET Package Mechanical Data-SOP-8

C. mb a l	Dimensions In Millimeters		Dimensions In Inches			
Symbol	Min	Max	Min	Max		
Α	1. 350	1. 750	0. 053	0.069		
A1	0.100	0. 250	0.004	0. 010		
A2	1. 350	1. 550	0. 053	0. 061		
b	0. 330	0. 510	0. 013	0. 020		
С	0. 170	0. 250	0.006	0.010		
D	4. 700	5. 100	0. 185	0. 200		
E	3. 800	4. 000	0. 150	0. 157		
E1	5. 800	6. 200	0. 228	0. 244		
е	1. 270 (BSC)		0.050	O (BSC)		
L	0. 400	1. 270	0. 016	0. 050		
θ	0°	8°	0°	8°		

Recommended Minimum Pads-

Package Marking and Ordering Information

Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8		3000

8