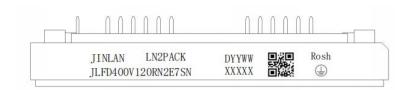
RoHS

JLFD400V120RN2E7SN

LN2 PACK module with Trench/Fieldstop IGBT and Emitter Controlled diode and NTC

Features


- Low VCE(sat) Trench IGBT technology
- 10µs short circuit capability
- V_{CE(sat)} with positive temperature coefficient
- · Low inductance case
- · High power density
- Integrated temperature sensor available

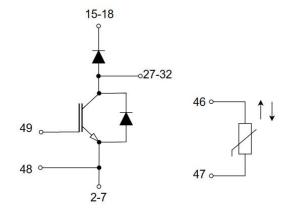
LN2 Pack

MARKING DIAGRAM

Typical Applications

- · AC motor drives
- Solar inverter
- · Medical equipment
- Uninterruptible power supply
- · Air-conditioning systems
- · Welding equipment
- Switched-mode and resonant-mode power supplies
- · Inductive heating, cookers
- Pumps, Fans

JINLAN = Company Name


JLFD400V120RN2E7SN = Specific Device Code

YYWW = Year and Work Week Code

XXXXX = Serial Number

QR code = Custom Assembly Information

Description

Package Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	Visol	RMS,f=50Hz,t=60s	2.5	kV
Internal isolation		basic insulation(class 1,IEC 61140)	Al ₂ O ₃	
Creepage distance	d _{creep}	terminal to backside	12	mm
Creepage distance	d _{creep}	terminal to terminal	6	mm
Comparative tracking index (electrical)	СТІ		>200	
RTI Elec.	RTI	housing	140	$^{\circ}$

Package Characteristic values

			Values			
Parameter	Symbol	Symbol Note or test condition		Тур.	Max.	Unit
Stray Inductance	LCE			30		nH
Module Lead Resistance, Terminal to Chip	RCC'+EE'			2.2		mΩ
Storage Temperature Range	T _{STG}		-40		125	$^{\circ}$
Mounting Torque, Screw M5	М		3		6	N.m
Weight	G			176		g

Boost IGBT

Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

Symbol	Description	Value	Unit
V _{CES}	Collector-Emitter Voltage	1200V	V
V _{GES}	Gate-Emitter Voltage	±30	V
I _{CDC}	Continuous Collector Current @ Tc = 80°C (TJMAX = 175°C)	400	Α
I _{CM}	Pulsed Collector Current, t_p limited by $T_{v_j max}$	800	Α
Tjmax	Maximum Junction Temperature	175	$^{\circ}$

Characteristics (Tc = 25°C unless otherwise noted)

Symbol	Parameter	Test Condition	n	Min	Тур	Max	Unit
			T _{vj} = 25 °C		1.45	1.95	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C =400A, V _{GE} = 15 V	T _{vj} = 150 °C		1.70		٧
			T _{vj} = 175 °C		1.75		
V _{GE(TH)}	Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 5$ mA,	T _{vj} = 25°C	5.0	5.8	6.5	٧
I _{CES}	Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} =1200V	/, T _{vj} = 25°C			100	uA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE} = \pm 30 \text{ V}, V_{CE} = 0 \text{ V}$	/, T _{vj} = 25°C			±100	nA
R _{Gint}	Internal Gate Resistance	T _{vj} = 25 °	С		0.67		Ω
Cies	Input Capacitance	f = 100 kHz T = 25 °	C \/. = 25 \/		68		nF
Coes	Out Capacitance	$f = 100 \text{ kHz}, T_{vj} = 25 ^{\circ}$ $V_{GE} = 0 ^{\circ}$			1.6		nF
Cres	Reverse Transfer	VGE - O	V		0.24		nF
Q_{G}	Gate Charge	V _{GE} = ±15 V, V _{CC}	c = 960 V	-	2.2		μC
		I _C = 400A, V _{CC} = 600 V,	T _{vj} = 25 °C		0.264	-	
t _{d(on)}	Turn-On Delay Time	$V_{GE} = 15 /-5V, R_G = 1.0 \Omega$	T _{vj} = 150 °C		0.299		μS
		T _{vj} = 17	T _{vj} = 175 °C		0.303		
		I _C =400A, V _{CC} = 600 V,	T _{vj} = 25 °C		0.048		
t _r	Rise Time	$V_{GE} = 15 /-5V, R_G = 1.0 \Omega$	T _{vj} = 150 °C		0.057		μS
			T _{vj} = 175 °C		0.059		
		I _C = 400A, V _{CC} = 600 V,	T _{vj} = 25 °C		0.536		
$t_{\text{d(off)}}$	Turn-off Delay Time	$V_{GE} = 15 /-5V, R_{Goff} = 1.0 \Omega$	T _{vj} = 150 °C		0.611		μS
			T _{vj} = 175 °C		0.624	-	
		I _C = 400A, V _{CC} = 600 V,	T _{vj} = 25 °C		0.065		
t_f	Fall Time	$V_{GE} = 15 /-5V, R_G = 1.0 \Omega$	T _{vj} = 150 °C		0.146		μS
			T _{vj} = 175 °C		0.148		
		I_C =400A, V_{CC} = 600 V, V_{GE} = 15 /-5V, R_G = 1.0 Ω	T _{vj} = 25 °C	-	12.440	-	
Eon	Turn-On Switching Loss per Pulse	(T _{vj max} = 175 °C)	T _{vj} = 150 °C		24.800		mJ
		(TV) max TTO O)	T _{vj} = 175 °C		27.600		
		I _C = 400A, V _{CC} = 600 V,	T _v j = 25 °C		54.060		
E _{off}	Turn Off Switching Loss per Pulse	$V_{GE} = 15 /-5V, R_G = 1.0 \Omega$ $(T_{vj max} = 175 °C)$	T _{vj} = 150 °C		72.000		mJ
	<u>-</u> .		T _{vj} = 175 °C		48.36		
I _{sc}	SC Data	$V_{GE} \le 15 \text{ V}, V_{CC} = 800 \text{ V},$ $V_{CEmax} = V_{CES} - L_{sCE} \cdot di/dt$	t _P ≤ 10 µs, T _{vj} =150 °C		2000		A
			,				

		t _P ≤ 10 μs T _{vj} =175 °c	·	1880		
R _{thJC}	Thermal resistance	Junction-to-Case (per IGBT)		0.077		K/W
T _{vj op}		Temperature under switching condition	s -40		150 ¹⁾	$^{\circ}$

¹⁾T_{vj op} > 150°C is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

Boost Diodes

Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

Symbol	Description	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	1200	V
I _F	Diode Continuous Forward Current @ T _C =80 °C	400	Α
I _{FRM}	Diode Maximum Forward Current t _p =1ms	800	Α

Characteristics (Tc=25℃ unless otherwise noted)

Symbol	Parameter	Note or Test Co	endition	Min	Тур	Max	Unit
			T _{vj} = 25 °C		2.45	3.20	
V_{F}	Diode Forward Voltage	I _F = 400 A, V _{GE} = 0 V	T _{vj} = 125 °C		2.30	1	V
			T _{vj} = 150 °C		2.25	1	
		V _{cc} = 600 V,	T _{vj} = 25 °C		9.27		
Q_{r}	Recovered Charge	$I_F = 400 \text{ A},$ $V_{GE} = 15 /-5V$ $R_G = 1.0 \Omega$	T _{vj} = 125 °C		19.41		μC
		-di _F /dt = 3100 A/μs	T _{vj} = 150 °C		28.84		
	I _{RM} Peak Reverse Recovery Current	$V_{cc} = 600 \text{ V},$ $I_F = 400 \text{ A},$ $V_{GE} = 15 \text{ /-5V}$ $R_G = 1.0 \Omega$	T _{vj} = 25 °C		120.9		
I_{RM}			T _{vj} = 125 °C		166.1		Α
		-di _F /dt = 3100 A/μs	T _{vj} = 150 °C		173.1		
		V _{cc} = 600 V, I _F = 400 A,	T _{vj} = 25 °C		8.57		
E _{rec}	E _{rec} Reverse recovery energy	$V_{GE} = 15 / -5V$ $R_{G} = 1.0 \Omega$	T _{vj} = 125 °C		17.60		mJ
		-di _F /dt = 3100 A/μs (T _{vj max} = 175 °C)	T _{vj} = 150 °C		21.21		
R_{thJC}	Thermal resistance, junction to case	per diode			0.11		K/W
T_{vjop}		Temperature under swite	ching conditions	-40		150 ²⁾	$^{\circ}$

 $^{^{2)}}T_{vj \, op} > 150\,^{\circ}\text{C}$ is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

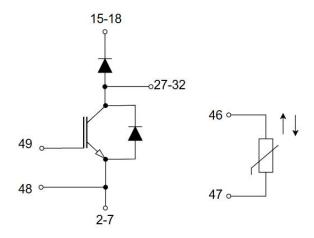
Free Wheeling Diodes

Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

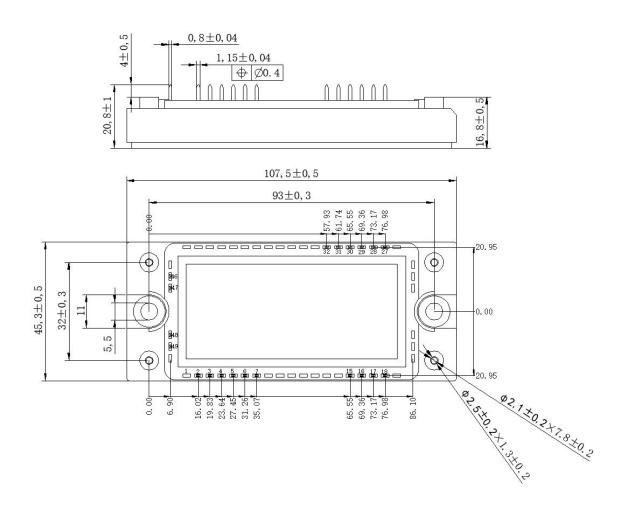
Symbol	Description	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	1200V	V
I _F	Diode Continuous Forward Current @ T _C =65 ℃	30	Α
I _{FRM}	Diode Maximum Forward Current t _p =1ms 60		Α

Characteristics (Tc=25℃ unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
	V _F Diode Forward Voltage	I _F =20A	T _{VJ} =25℃		1.9	2.5	
.,		I _F =40A			2.4	3.2	.,
VF		I _F =20A	T _{VJ} =150℃		1.8	-	V
		I _F =40A			2.2		
P _{tot}	total power dissipation	T _C =25℃				125	W
R _{thJC}	Thermal resistance	Junction-to-Case (per diode)		1	0.89	1	K/W
T _{vj op}		Temperature under	switching conditions	-40		150 ³⁾	$^{\circ}$


 $^{^{3)}}T_{vj\,op}$ > 150 $^{\circ}$ C is only allowed for operation at overload conditions. For detailed specifications please refer to AN 2018-14.

NTC Characteristics (Tc = 25°C unless otherwise noted)


Symbol	Parameter Test Condition		Min	Тур	Max	Unit
R ₂₅	Rated Resistance			5.0		kΩ
ΔR/R	Deviation of R100	Tc=100 ℃,R100=493.3Ω	-5		5	%
P ₂₅	Power Dissipation				20.0	mW
B _{25/50}	B-value	R ₂ =R ₂₅ exp[B _{25/50} (1/T ₂ - 1/(298.15K))]		3375		К
B _{25/80}	B-value	R ₂ =R ₂₅ exp[B _{25/80} (1/T ₂ - 1/(298.15K))]		3411		К
B _{25/100}	B-value	R ₂ =R ₂₅ exp[B _{25/100} (1/T ₂ - 1/(298.15K))]		3433		К

CIRCUIT DIAGRAM

PACKAGE DIMENSION

REVISION HISTORY

Document version	Date of release	Description of changes
Rev.00	2024-06-25	Preview

ATTENTION

- Any and all Jinlan power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Jinlan Power Semiconductor representative nearest you before using any Jinlan power products described or contained herein in such applications.
- Jinlan Power Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Jinlan power modules described or contained herein.
- Specifications of any and all Jinlan power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- Jinlan Power Semiconductor (Wuxi).co.,LTD. strives to supply high-quality high-reliability products. However,any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all Jinlan power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Jinlan Power Semiconductor (Wuxi).co.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Jinlan Power Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Jinlan power product that you intend to use.
- This catalog provides information as of Jun.2024. specifications and information herein are subject to change without notice.