

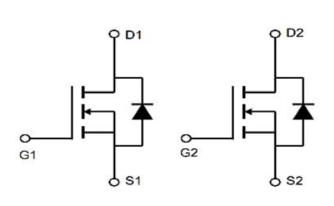
60V N+N-Channel Enhancement Mode MOSFET

Description

The SX15H06S uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

 $V_{DS} = 60V I_{D} = 15A$


 $R_{DS(ON)} < 18m\Omega$ @ $V_{GS}=10V$

Application

Battery protection

Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25 ℃unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	60	V
VGS	Gate-Source Voltage	±20	V
lo@Ta=25°C	Continuous Drain Current, V _{GS} @ 10V ¹	15	Α
l o@Ta=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	9.2	Α
IDM	Pulsed Drain Current ²	45	А
EAS	Single Pulse Avalanche Energy³	64	mJ
P o@T a=25°C	Total Power Dissipation ⁴	3.6	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}$
Tu	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
R⊕JA	Thermal Resistance Junction-Ambient ¹	85	°C/W

60V N+N-Channel Enhancement Mode MOSFET

Electrical Characteristics (TJ=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BVDSS	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	60	65		V	
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25℃, I _D =1mA		0.057		V/℃	
DD0(011)	S(ON) Static Drain-Source On-Resistance ² $V_{GS}=10V$, $I_D=12A$ $V_{GS}=4.5V$, $I_D=10A$	V _{GS} =10V , I _D =12A		11	18		
RDS(ON)		V _{GS} =4.5V , I _D =10A		15	20	mΩ	
VGS(th)	Gate Threshold Voltage		1.2	1.6	2.5	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, I_D =250uA		-5.68		mV/℃	
		V _{DS} =48V , V _{GS} =0V , T _J =25℃			1 .		
IDSS	Drain-Source Leakage Current	V _{DS} =48V , V _{GS} =0V , T _J =55°C			5	uA	
IGSS	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =15A		45		S	
R _g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7		Ω	
Qg	Total Gate Charge (4.5V)			19.3		nC	
Q _{gs}	Gate-Source Charge	V _{DS} =48V , V _{GS} =4.5V , I _D =15A		7.1			
Q_{gd}	Gate-Drain Charge			7.6			
Td(on)	Turn-On Delay Time			7.2			
Tr	Rise Time	V_{DD} =30V , V_{GS} =10V , R_{G} =3.3 Ω ,		50		ns	
Td(off)	Turn-Off Delay Time	I _D =15A		36.4			
T _f	Fall Time			7.6		1	
Ciss	Input Capacitance			2423			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		145		pF	
Crss	Reverse Transfer Capacitance			97			
ls	Continuous Source Current ^{1,5}	V -V -0V Farra 0.00000			35	Α	
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			80	Α	
VSD	Diode Forward Voltage ²	V _{GS} =0V , I _S =A , T _J =25℃			1	V	
VOD							
t _{rr}	Reverse Recovery Time	- IF=15A , dI/dt=100A/µs , Tյ=25℃		16.3		nS	

Notes:

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3. The power dissipation is limited by 175℃ junction temperature
- 4. The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

60V N+N-Channel Enhancement Mode MOSFET

Typical Characteristics

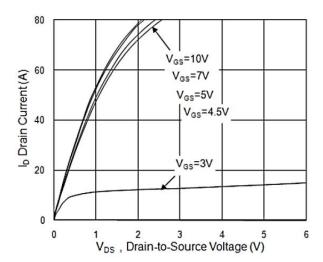


Fig.1 Typical Output Characteristics

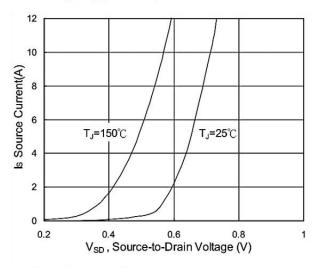


Fig.3 Forward Characteristics of Reverse

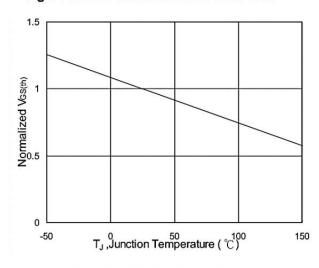


Fig.5 Normalized V_{GS} v.s T_J

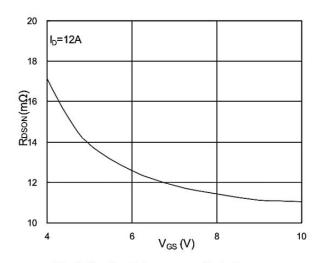


Fig.2 On-Resistance v.s Gate-Source

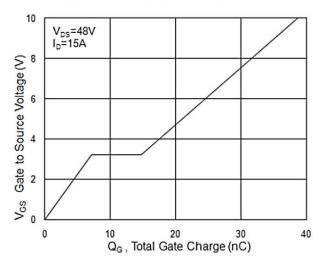


Fig.4 Gate-Charge Characteristics

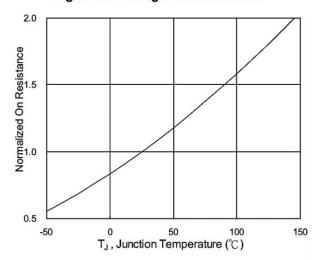
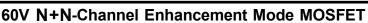
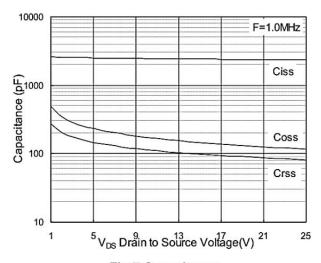




Fig.6 Normalized R_{DSON} v.s T_J

<u>SXSEMI</u>

Typical Characteristics

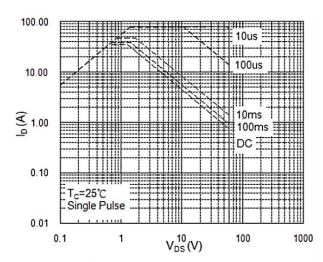


Fig.7 Capacitance

Fig.8 Safe Operating Area

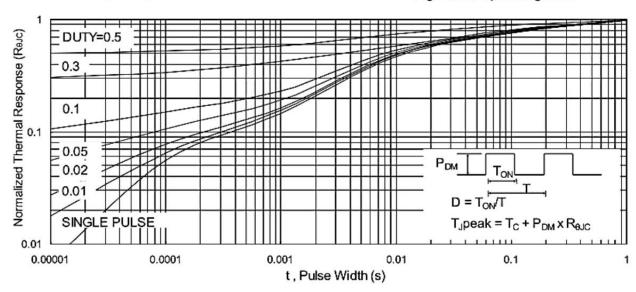


Fig.9 Normalized Maximum Transient Thermal Impedance

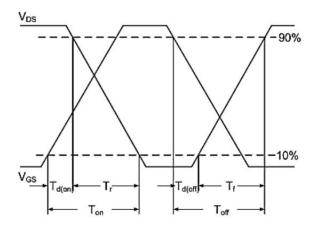
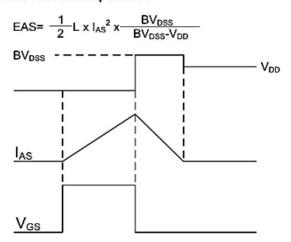
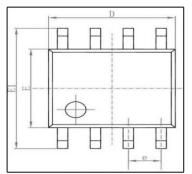
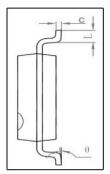
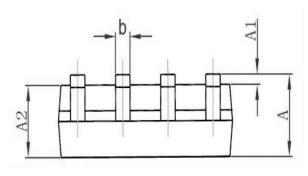
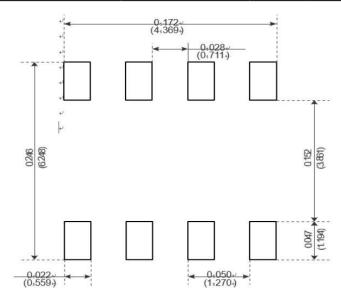


Fig.10 Switching Time Waveform


Fig.11 Unclamped Inductive Switching Waveform


Package Mechanical Data-SOP-8L-DX-Double

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0. 004	0. 010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
E	3.800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270	(BSC)	0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
θ	0°	8°	0°	8°

Recommended Minimum Pads

Package Marking and Ordering Information

		···	
Product ID	Pack	Marking	Qty(PCS)
TAPING	SOP-8L		3000