Dual-Axis Inclinometer

High Accuracy Three-Axis Accelerometer

Datasheet

Specifications – electrical				
Power source	4.1 – 38 VDC			
Measuring range	±90° (two-dimensional)			
(dual mode)	±180° (one-dimensional)			
Resolution	<0.005° 0.1 mg (@data rate ≤ 5)			
Noise density	$\pm 0.0014^{\circ}/\sqrt{Hz}$			
Accuracy: Horizontal	Err. ≤ ±0.04° (typical), ±0.08°			
installation	(maximum error in full range)			
Vertical installation	Err. $< \pm 0.08^{\circ}$ (within $\pm 30^{\circ}$ of Vertical)			
Zero offset error [†]	< ±0.02° (@20°C) [‡]			
Temperature offset drift	±0.002° /°C (typical)			
Repeatability	< 0.02°			
Low-pass filter	Selectable, 1 Hz to 1kHz			
bandwidth				
Baud rate	2.4kbps – 921.6kbps selectable,			
	default: 115.2kbps			
Data format	ASCII, port settings: 1 start bit, 8			
	data bits, 1 stop bit & no parity			
Output data rate	1, 2, 5, 10, 20, 25, 40, 50, 100, 200,			
	and 500 Hz selectable			
LED indicators	Green: CPU heartbeat			
	Flashing at 1 Hz			
	Red: Data transmission rate			
	Flashing at current data rate			
Power consumption	< 30 mA (@ 5 V)			
GUI software	WinCTi-Tilt®			
Serial interface	RS232, RS422, RS485, USB, SSI,			
options	Wireless (Bluetooth 4.2)			
	RS485 with multi-drop networked			
Temperature sensor	0.2°C			
resolution				
_				

	No 105 With mattract arop networked
Temperature sensor resolution	0.2°C
Accessories	
Connector and cable	
MSKS 6F/CS12187	Male cable M8, 6-pin

[†] Zero g offset can be easily corrected and saved by user.

Features

• Dual mode digital inclinometer

Dual-axis, horizontal installation: ±90°
Single-axis, vertical installation: ±180°

High resolution: < 0.005° | 0.1 mg
 High accuracy: err. ≤ 0.04° (typical)

• Ultra low noise: $\pm 0.0014^{\circ}/\sqrt{Hz}$

• Very low temperature offset drift: ±0.002°/°C (Typical)

• Selectable accelerometer range: ±2 g/±4 g/±8 g
• Programmable handwidth and response time

• Programmable bandwidth and response time

• Simple ASCII interface language

• IP 67 compliant connector, cable, and housing

• Robust aluminum housing

• Low power consumption: < 30 mA (@ 5 V)

Applications

- Platform control, alignment, and stabilization
- Inclination and rotational movement measurement
- Antenna and satellite dish tracking and control
- Vibration and condition monitoring
- Navigation and GPS compensation
- Robotic position sensing and control
- Agricultural and industrial vehicle tilt monitoring

Specifications – mechanical			
Protection	IP 67 (housing, connector and cable)		
Dimension	1.64" x 2.14" x 0.85"		
Material	Enclosure: anodized aluminum		
(cable is optional as a	Connector: brass / nickel		
third party product)	Cable molded head: TPU		
	Cable carrier: TPU or nylon		
	Conductor insulation: PVC		
Temperature range§	-40°C to +85°C (-40°F to +185°F)		
Connection	Cable gland		
	connector M8, 6-contact (female)		

Terminal	Assignment			
Connector	RS232/UART/USB**	RS422	RS485	Wire Color
Pin 1	+Vin	+Vin	+Vin	Brown
Pin 2	GND	GND	GND	White
Pin 3	TX	TX+	D+	Blue
Pin 4	_	TX-	D-	Black
Pin 5	RX	RX+	D+	Gray
Pin 6	_	RX-	D-	Pink
1 6 2 5 0 3	Device: M 8 – 6-contact (female)	Cable: 2 M 8 – 6-pin (male) 3) 3 6 5

[§] Cable is a third party product with temperature tolerance from 40°C to +105°C (-40°F to +221°F).

[‡] Units can be calibrated between -40°C and 85°C on request.

^{*} USB uses UART interface and a UART to USB cable.

Dual-Axis Inclinometer Datasheet

WinCTi-Tilt software

WinCTi-Tilt is a graphical user interface (GUI) software provided by CTi Sensor Inc. for visualization aide, device configuration, and data logging. WinCTi-Tilt is designed to be user-friendly and intuitive to users. The package can be downloaded from the CTi Sensors website.

Serial interface and data format

TILT-33A uses the following ASCII format, very similar to the widely used NMEA 0183 protocol, for data output:

- Default message: CSTLT, A_{XN} , A_{YN} , A_{ZN} , α_{X} , α_{Y} , R, T*CC<CR><LF>
- Optional message: \$CSACC, Ax, Ay, Az, T*CC<CR><LF>

Which:

 \mathbb{A}_{XN} , \mathbb{A}_{YN} , \mathbb{A}_{ZN} : Normalized X, Y and Z accelerations in milli g

 A_X, A_Y, A_Z : True X, Y and Z accelerations in milli g

 α_x , α_y : Pitch and Roll angles in degrees, horizontal installation

R: Rotation angle in degrees, vertical installation

T: Internal temperature in degree centigrade

CC: Checksum (Two ASCII characters)

<CR> <LF>: Carriage return, and line feed characters

Example:

• \$CSTLT,+0011.24,-0032.10,+0991.07,+000.650,-001.854,-109.301,+027.7*70<CR><LF>

Data rate < 10

\$CSTLT,+0011.2,-0032.1,+0991.4,+000.65,-001.85,-109.12,+027.7*72<CR><LF>

10 ≤ Data rate < 100

• \$CSTLT,+0011,-0032,+0991,+000.7,-001.8,-109.0,+028*4F<CR><LF>

Data rate ≥ 100

8-bit Checksum

Checksum is calculated by XORing all characters between \$ and * (not including the \$ and the * characters) based on the NMEA standard. It results in two hexadecimal characters, which are sent in ASCII format.

TILT - 33A High Accuracy

Three-Axis Accelerometer

Dual-Axis Inclinometer Datasheet

Configuration commands

TILT-33A uses a simple command format which allows user to change the device configuration and request specific information or data. All commands start with a '[' character, and end with a carriage return character. All responses end with a carriage return and newline character. Table I shows the list of the interface commands for TILT-33A series. Letter 'n' after '['character is the unit number which is set to n=1 by default, and can be set by user to any number from 1 to 9.

Table I: Interface commands for TILT-33A series

Command	Comments	Response	Comments
[n <cr></cr>	Ping unit number n	!n <cr><lf></lf></cr>	Acknowledge ping
[N? <cr></cr>	Request unit number	> Unit Number: n	Returns unit number, default: n=1
[n#m <cr></cr>	Change unit number n to (non-	>New Unit Number: n	n=old unit number, m=new unit number,
	zero) unit number m, 1≤ m ≤ 9		default: n=1
[n#FW <cr></cr>	Save unit number into flash	> Current Unit Number, n, was	Unit number will be changed
	memory	written into flash memory as	permanently, and current unit number
		the default Unit Number for	will be saved into the flash memory as
		this device!	the default unit number.
[nV <cr></cr>	Firmware Version	> Firmware Version:d.d	Returns firmware version
[nS <cr></cr>	Serial Number	> Device n Serial	Returns 7-digit serial number
		Number:ddddddd	
[nBn <cr></cr>	Baud rate setting:	> Change to new Baud	Selected baud rate should support
	n= 2:2400, 4:4800, 9:9600,	Rate:dddddd	current data rate. Otherwise, baud rate
	19:19200, 38:38400, 57:57600,		will not be changed.
	115:115200, 230:230400,		
	460:460800, 921:921600 (bps)		
[nBFW <cr></cr>	Save baud rate into flash	> Current Baud Rate, dddddd,	Baud rate will be changed permanently,
	memory	was written into flash memory	and current baud rate will be saved into
		as the default Baud Rate!	the flash memory.
[nDn <cr></cr>	Data rate setting: n= 1, 2, 5, 10,	> New Output Data Rate: n	Default data rate is 2 Hz. New data rate
	20, 25, 40, 50, 100, 200, and		will be saved into the flash memory.
	500 Hz		
[nARn <cr></cr>	Selecting accelerometer	> New Accelerometer Range is:	New accelerometer range will be saved
**	measurement range: n=2, 4, 8	+/-ng	into the flash memory (default: ±2 g).
[nLPFn <cr>**</cr>	Low-pass filter bandwidth	> Low-pass Filter Bandwidth:	Set the bandwidth of low-pass filter for
	setting: n=0 to 10. Projected	dddd Hz	accelerometer data (default: n = 4,
	bandwidth is 2 ⁿ Hz		bandwidth = 16Hz).
[nZA <cr></cr>	Zero g offset correction for X	> Accelerometer Zero Offset	Current value of X and Y accelerations
	and Y axes	Adjusted: X Offset: ddd.d, Y	(Pitch and Roll angles) will be used as the
		Offset: ddd.d	zero level.
[nMxy <cr></cr>	Output messages ON/OFF	Data message will be sent out	Example for inclinometer data:
	x= I: Inclinometer data	once, continuously or will be	[1MIS: Sends out one data message
	A: Accelerometer data	turned off	[1MIC: Continuously sends out data
	y=S: single message		message
	C: Continuous message		[1MIX: Stops sending out data message
	X: Message Off		
[nMICFW <cr></cr>	Save output message ON/OFF	> Current ON/OFF message	Current message ON/OFF status will be
	status into flash memory	status was written into flash	saved into flash memory.
4.		memory as the default!	
[nRFD <cr>**</cr>	Reset to factory default	> Reset to factory default!	Resets the selectable parameters (except
			baud rate) to their default values.

Firmware version 1.16 and higher

Dual-Axis Inclinometer Datasheet

Dimensional drawing

Part number

TILT XX Χ X -XX **Design model** A1 Interface 3 RS232 4 RS422 8 RS485 U USB S SSI W Wireless **Housing material** Aluminum **ABS Plastic** S Stainless Steel 316L O OEM (No Housing) **Family Series** 05 Small size board (1"x1")

- Board with multiple interfaces 10
- 15 High accuracy analog inclinometer board
- 20 Low cost, ABS plastic enclosure
- 3x High accuracy, aluminum enclosure
- Dynamic inclinometer, aluminum enclosure 5x
- Harsh environment, stainless steel enclosure

Horizontal installation position

Measuring range: ±90° (two-dimensional)

Default Y=0

Inclination Y = +30

Default X=0

Inclination X = +30

Vertical installation position

Rotation R=0

Rotation R=+45

Rotation R=90

Rotation R = +180

Warranty: This product has 18 months limited warranty.

For more information, please visit: www.CTiSensors.com/warranty

> This product is fully designed and manufactured in the U.S.A.

CTi Sensor, INC.

30301 Emerald Valley Parkway, Solon, OH 44139

Phone: (440) 264 - 2370 Email: Sales@CTiSensors.com

All contents of this document are subject to change without any notice.