

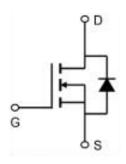
30V N-Channel Enhancement Mode MOSFET

Description

The SX180N03T uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a Battery protection or in other Switching application.

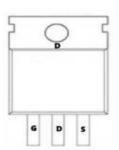
General Features

VDS=30V ID =180A


 $R_{DS(ON)} < 3.2 m\Omega$ @ $V_{GS}=10V$

Application

Battery protection


Load switch

Uninterruptible power supply

Absolute Maximum Ratings (Tc=25℃unless otherwise noted)

Symbol	Parameter	Rating	Units	
V _D s	Drain-Source Voltage	30	V	
Vgs	Gate-Source Voltage	±20	V	
lo@Tc=25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	180	Α	
lo@Tc=100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	145	А	
Ідм	Pulsed Drain Current ² 500		А	
EAS	Single Pulse Avalanche Energy ³ 246		mJ	
las	Avalanche Current	70.2	Α	
P o@T c= 25 °C	Total Power Dissipation ⁴ 187		W	
Тѕтс	Storage Temperature Range	-55 to 175	$^{\circ}$	
TJ	Operating Junction Temperature Range	-55 to 175	$^{\circ}$	
Reja	Thermal Resistance Junction-Ambient ¹	62	°C/W	
Rejc	Thermal Resistance Junction-Case ¹	0.8	°C/W	

Electrical Characteristics (T」=25 ℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	30	38		V
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25℃, l _D =1mA		0.014		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , ID=30A		2.1	3.2	mΩ
		V _G s=4.5V , I _D =15A		3.0	3.8	
VGS(th)	Gate Threshold Voltage	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1.2	1.6	2.5	V
$\triangle V_{\text{GS(th)}}$	V _{GS(th)} Temperature Coefficient	Vgs=Vps , Ip =250uA		-4		mV/℃
IDSS	Drain-Source Leakage Current	V _{DS} =24V , V _{GS} =0V , T _J =25℃			1	uA
		V _{DS} =24V , V _{GS} =0V , T _J =55°C			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
gfs	Forward Transconductance	VDS=5V , ID=30A		50		S
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.7		Ω
Q_g	Total Gate Charge (4.5V)	V _{DS} =15V , V _{GS} =10V , I _D =15A		56.9		nC
Qgs	Gate-Source Charge			13.8		
Qgd	Gate-Drain Charge			23.5		
Td(on)	Turn-On Delay Time			20.1		ns
Tr	Rise Time	VDD=15V , VGS=10V		6.3		
Td(off)	Turn-Off Delay Time	R _G =3.3Ω, l _D =1A		124.6		
Tf	Fall Time			15.8		
Ciss	Input Capacitance			5850		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		720		pF
Crss	Reverse Transfer Capacitance			525		
IS	Continuous Source Current ^{1,5}	\/\/\/\			205	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			500	Α
VSD	Diode Forward Voltage ²	Vgs=0V , Is=1A , Tյ=25℃			1.2	V

Note:

- 1. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- 2 . The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3 . The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1Mh,IAS=22A
- $4\,{\,{}^{^\circ}}$ The power dissipation is limited by $175\,{\,}^\circ\!{\,}{}^\circ$ junction temperature
- $5\sqrt{100}$ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

2

www.sxsemi.com

Typical Characteristics

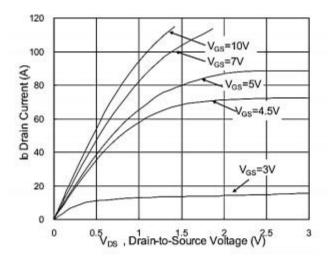


Fig.1 Typical Output Characteristics

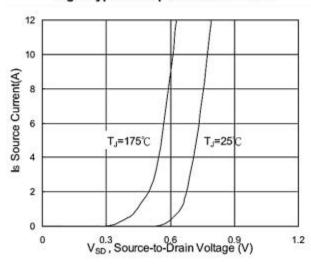


Fig.3 Forward Characteristics of Reverse

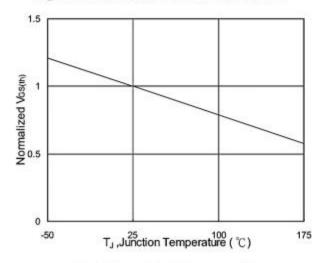


Fig.5 Normalized V_{GS(th)} vs. T_J

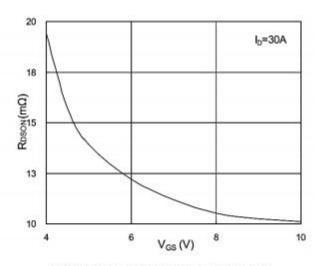


Fig.2 On-Resistance vs. G-S Voltage

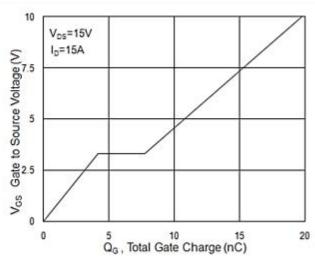


Fig.4 Gate-Charge Characteristics

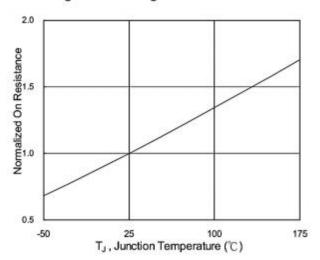
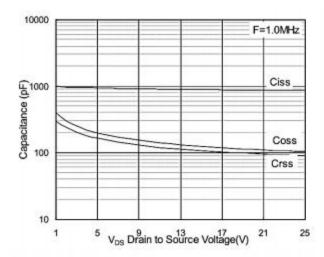



Fig.6 Normalized RDSON vs. TJ

Typical Characteristics

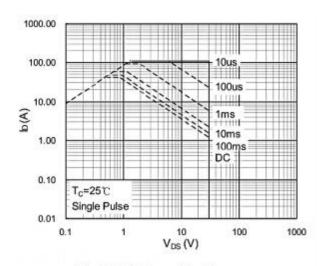


Fig.7 Capacitance

Fig.8 Safe Operating Area

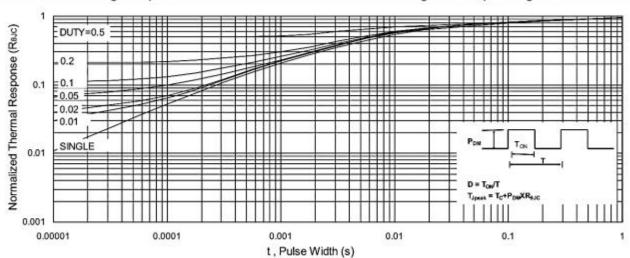


Fig.9 Normalized Maximum Transient Thermal Impedance

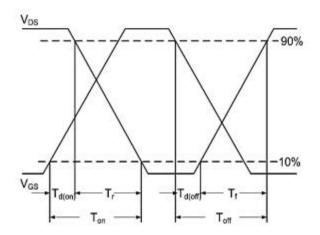


Fig.10 Switching Time Waveform

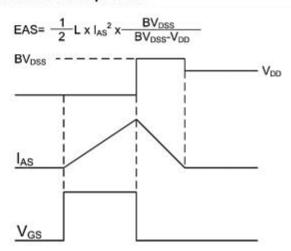
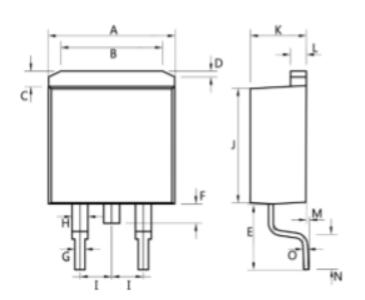



Fig.11 Unclamped Inductive Switching Waveform

30V N-Channel Enhancement Mode MOSFET

Package Mechanical Data- TO-263-3L

Dim.	Min.	Max.		
Α	10.0	10. 5		
В	7.25	7.75		
С	1.3	1.5		
D	0.55	0.75		
E	5.0	6.0		
F	1.4	1.6		
G	0.75	0.95		
Н	1.15	1.35		
ı	Typ 2.54			
J	8.4	8.6		
K	4.4	4.6		
L	1.25	1.45		
M	0.02	0.1		
N	2.4	2.8		
0	0.35	0.45		
All Dimensions in millimeter				

Package Marking and Ordering Information

Product ID	Pack Marking		D Pack Marking		Qty(PCS)	
TAPING	TO-263-3L		800			

5