

北京时代华诺科技有限公司

文件编号: Q/VN20001-2020

规格书

产品型号		VSP14N65P(成品)
文件编号		Q/VN20001-2020
类	别	电压控制放电开关
版	本	A
日	期	2020-7-22

低电感封装

VSP14N65P

TO-247-5

描述

VSP14N65P 是 N-MOS 控制晶闸管技术的电压控制放电开关器件(vcs),采用 5 管脚的 TO-247 封装。

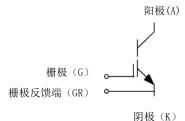
这种 VCS 和高电流变化率的可控硅晶闸管一样,有着高的峰值电流能力和低导通电压降落的优点。

此款半导体器件应用于高功率电路,尤其适用于非常小的输入能量的功率 电路及电容放电电路应用。

特性

 1400V 峰值关断电压
 MOS 栅极控制

 65A 持续电流等级
 低导通电压


 5kA 浪涌电流能力
 低导通延迟

封装

原理图

>100kA/uSec dI/dt 能力

极限参数	符号	数值	单位
峰值关断电压	$V_{ m DRM}$	1600	V
峰值反向电压	$V_{ m rrm}$	-5	V
110°C 下的持续阳极电流	I _{A110}	65	А
重复峰值阳极电流(脉冲宽度=1uSec)	I_{ASM}	5000	А
持续栅极-阴极电压	V_{GKS}	+/-20	V
峰值栅极-阴极电压	V_{GKM}	+/-25	V
关断状态下的最小负向栅极-阴极电压	V _{GK(OFF-MIN)}	-5	V
最大结温	T_{JM}	150	°C
最大焊接温度(安装)	260	°C	

TO-247-5

性能特点	能特点 T _J =25 ^o C (除另有特殊说明)			测量值			
参数	符号	测试条件		最小值	典型	最大值	单位
阳极-阴极击穿电压	V_{BR}	V _{GK} =-5, I _A =100μA		1400			V
阳极-阴极关断电流	I_{D}	VGE=-5V, VAK=1200V	T _C =25 ^o C		1	10	uA
四位人的	ID		T _C =125 ⁰ C		250	1000	uA
阳极-阴极导通阈值电压	$V_{GK(TH)}$	V _{AK} =V _{GK} , I _{AK} =1mA				1.1	V
栅极-阴极泄漏电流	$I_{GK(lkg)}$	V _{GK} =+/-20V				750	nA
阳极-阴极导通电压	V_{T}	IT=65A, VGK=+5V (如图 1,2 & 3)	T _C =25 ^o C		1.3	1.8	V
内似-例似于通电压 ————————————————————————————————————			T _C =125 ^o C		1.1	1.4	V
输入电容	C_{ISS}	/			25		nF
导通延迟时间	$t_{D(ON)}$	0.2uF Capacitor Discharge T _J =25 ^o C, V _{GK} = -5V to +5V				500	nS
峰值阳极电流	I_{P}	V _{AK} =1250V, R _G =4.7Ω L _S = 8nH (如图 4,5 & 6)		4000			А
导通延迟时间	$t_{D(ON)}$	0.2uF Capacitor Discharge T _J =125 ^o C, V _{GK} = -5V to +5V				500	nS
峰值阳极电流	I_P	V _{AK} =1250V, R _G =4.7Ω L _S = 8nH (如图 4,5 & 6)		4000			Α

典型参数曲线 (除另有特殊说明)

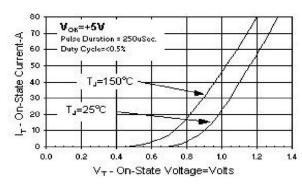


图 1. 导通曲线

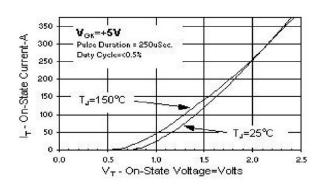


图 2. 导通曲线

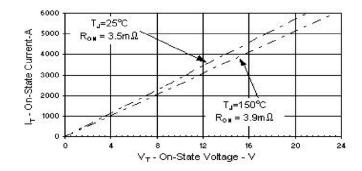


图 3 预期高电流导通特性曲线

TO-247-5

典型参数曲线 (续)

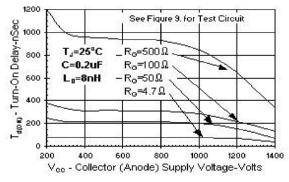


图 4 导通延迟特性曲线

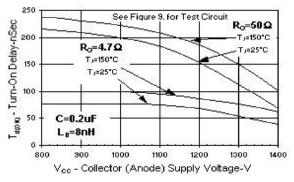


图 5 导通延迟特性曲线

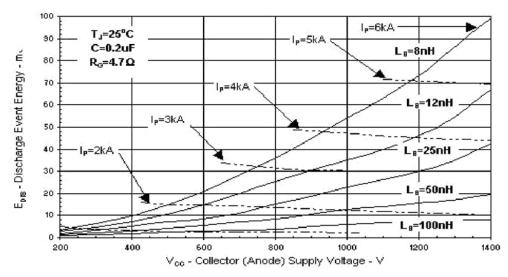


图 6 0.2uF 放电脉冲参数特性曲线

TO-247-5

测试电路与波形

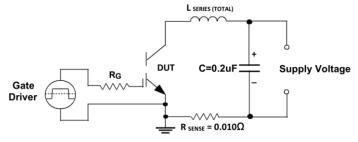


图 7 0.2uF 脉冲放电电路原理图

LSERIES(TOTAL) 用公式 $1 / (f 2\pi)^2 C$ 计算 其中 f = f requency of I_A RSENSE 是校准电流观察电阻 (CVR)

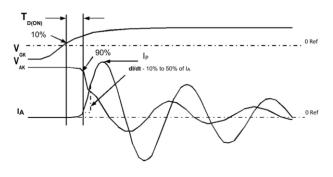
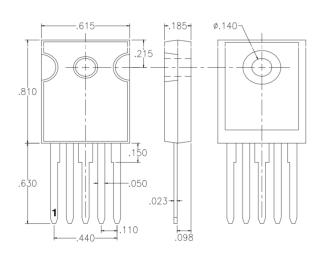


图 8 0.2uF 脉冲放电电路波形图

这张波形图运用低电感电路(<10nH)的代表. $V_{\rm GR}$ 设置为正直到 $I_{\rm A}$ 震荡结束($I_{\rm A}$ =0).

TO-247-5



应用说明:

A1. 栅极反馈端

这种 VCS 设计应用于高电路变化率(di/dt)电路。给管脚 2 增加独立的阴极连接(栅极反馈端)可以减小快速变换的阳极-阴极电路 对栅极控制电压(V=L*di/dt)的影响。因此,严格讲,用户要给 VCS 器件增加栅极反馈端作为 栅极驱动电源的参考点。

封装

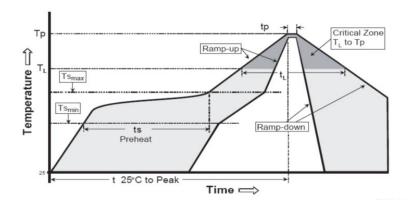
Pin 1: 栅极

Pin 2: 栅极反馈端

Pin 3 : 阳极

Pin 4: 阴极

Pin 5: 阴极


常规处理措施

- 1. 安装的回流温度应不超过 260 摄氏度。
- 2. 和所有的 MOS 栅器件一样,要注意采用合理的 处理程序避免静电放电对器件栅极参数的影响。

在所以的组装和测试过程中,要注意观察并采取措施处理静电放电敏感器件。

TO-247-5

	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Average Ramp-Up Rate (t _{smax} to t _P)	3°C/second max.	3°C/second max.	
Preheat			
Temperature Min (t _{SMIN})	100°C	150°C	
Temperature Max (t _{SMAX})	150°C	200°C	
Time (tsmin to tsmax)	60-120 seconds	60-180 seconds	
Time maintained above:			
Temperature (t _L)	183°C	217°C	
Time (t _L)	60-150 seconds	60-150 seconds	
Peak/Classification Temperature (t _P)	240 +0/-5°C	260 +0°C	
Temperature (t _P)	10-30 seconds	20-40 seconds	
Ramp-Down Rate	6°C/second max.	6°C/second max.	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	