

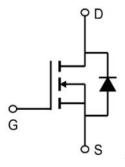
68V N-Channel Enhancement Mode MOSFET

Description

The SX80N07T uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with Hight EAS. This device is suitable for use as a Battery protectionor in other Switching application.

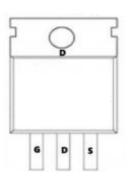
General Features

V_{DS} = 68V I_D =80A


 $R_{DS(ON)} < 9.0 m\Omega$ @ $V_{GS}=10V$

Application

Battery protection


Load switch

Uninterruptible power supply

Absolute Maximum Ratings (T_c=25[°]C unless otherwise noted)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	68	V
VGS	Gate-Source Voltage	±20	V
l b@Tc=25℃	Continuous Drain Current, V _{GS} @ 10V ¹	80	Α
l b@Tc=100℃	Continuous Drain Current, V _{GS} @ 10V ¹	52	Α
IDM	Pulsed Drain Current ²	320	А
EAS	Single Pulse Avalanche Energy ³	110	mJ
IAS	Avalanche Current	22	Α
P @Tc=25℃	Total Power Dissipation ⁴	103	W
TSTG	Storage Temperature Range	-55 to 150	$^{\circ}\! \mathbb{C}$
TJ	Operating Junction Temperature Range	-55 to 150	$^{\circ}$
R₀JA	Thermal Resistance Junction-ambient ¹	63	°C/W
ReJC	Thermal Resistance Junction-Case ¹	1.46	°C /W

1

Electrical Characteristics (T_J=25℃, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	Vgs=0V , Ip=250uA	68	72		V
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25℃, I _D =1mA		0.023		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	Vgs=10V , Ip=10A		7.5	9.0	mΩ
VGS(th)	Gate Threshold Voltage	Vgs=Vps , Ip =250uA	2.0	3.0	4.0	V
△VGS(th)	V _{GS(th)} Temperature Coefficient	VGS=VDS , ID =250UA		-4.2		mV/℃
IDSS	Drain-Source Leakage Current	Vps=68V , Vgs=0V , TJ=25℃			1	uA
1000		V _D s=68V , V _G s=0V , T _J =55℃			5	
IGSS	Gate-Source Leakage Current	Vgs=±20V , Vps=0V			±100	nA
Qg	Total Gate Charge (4.5V)			35		nC
Qgs	Gate-Source Charge	VDS =30V, ID =30A, VGS =10V		11		
Qgd	Gate-Drain Charge	100 101		9		
Td(on)	Turn-On Delay Time	VDS =30V,ID =30A,		15		
Tr	Rise Time			90		ns
Td(off)	Turn-Off Delay Time	RGEN =3Ω, V GS =10V		45		
Tf	Fall Time			30		
Ciss	Input Capacitance			4000		
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		267		pF
Crss	Reverse Transfer Capacitance			250		
IS	Continuous Source Current ^{1,5}				80	Α
ISM	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			320	Α
VSD	Diode Forward Voltage ²	V GS =0V, I S =80A			1.2	V
trr	Reverse Recovery Time	T J =25℃		78		nS
Qrr	Reverse Recovery Charge	I F =20A,dI/dt=100A/μs		51		nC

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- $\ensuremath{\mathsf{2}}_{\ensuremath{\mathsf{N}}}$ The data tested by pulsed , pulse width .The EAS data shows Max. rating .
- 3 . The test cond \leq 300us duty cycle \leq 2%, duty cycle ition is TJ =25°C, VDD =35V, VG =10V, R G =25 Ω , L=0.5mH, IAS =21A

2

- 4. The power dissipation is limited by 175°C junction temperature
- 5. The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

www.sxsemi.com

Typical Characteristics

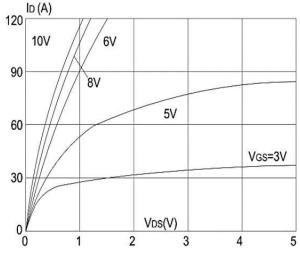


Figure1: Output Characteristics

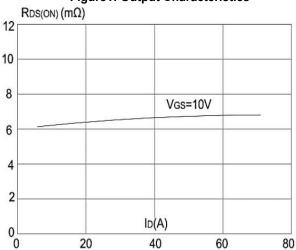


Figure 3:On-resistance vs. Drain Current

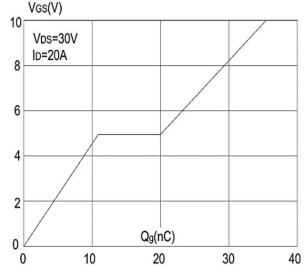


Figure 5: Gate Charge Characteristics

3

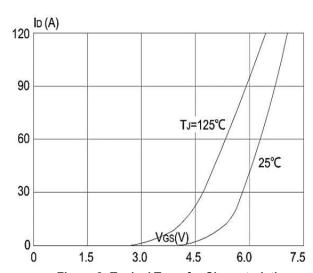


Figure 2: Typical Transfer Characteristics

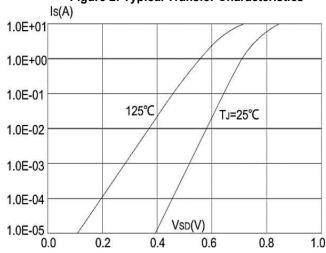


Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Typical Characteristics

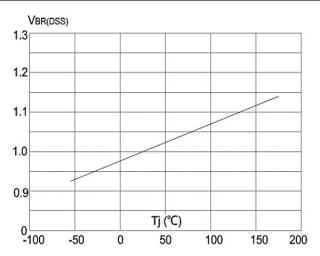


Figure 7: Normalized Breakdown Voltage vs Junction Temperature

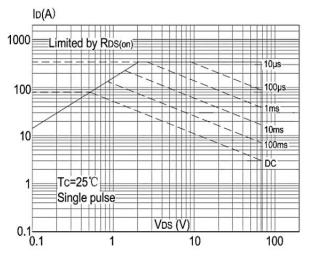


Figure 9: Maximum Safe Operating Area

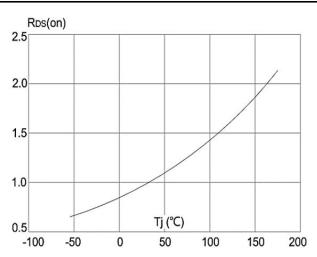


Figure 8: Normalized on Resistance vs.

Junction Temperature

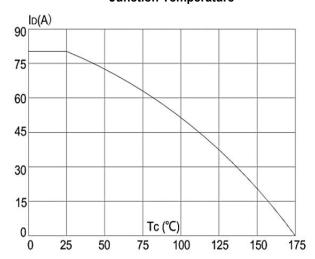


Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

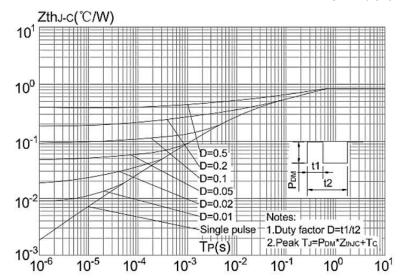
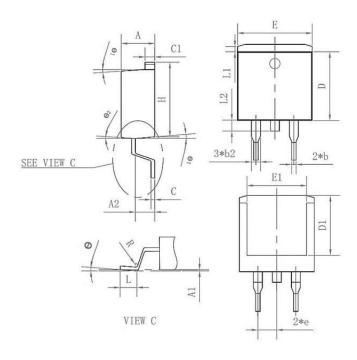



Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambien

Package Mechanical Data-TO-263-3L-SLK

	Common			
Symbol	mm			
	Mim	Nom	Max	
Α	4.35	4.47	4.60	
A1	0.09	0.10	0.11	
A2	2.30	2.40	2.70	
b	0.70	0.80	1.00	
b2	1.25	1.36	1.50	
С	0.45	0.50	0.65	
C1	1.29	1.30	9.40	
D	9.10	9.20	9.30	
D1	7.90	8.00	8.10	
E	9.85	10.00	10.20	
E1	7.90	8.00	8.10	
Н	15.30	15.50	15.70	
е	-	2.54	-	
L	2.34	2.54	2.74	
L1	1.00	1.10	1.20	
L2	1.30	1.40	1.50	
R	0.24	0.25	0.26	
θ	0°	4°	8°	
Θ1	4°	7°	10°	
Θ2	0°	3°	6°	

Package Marking and Ordering Information

. wonago manang ana ondornig morniadon				
Product ID	Pack	Marking	Qty(PCS)	
TAPING	TO-263-3L		800	

5