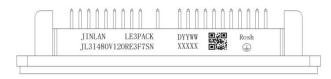

RoHS

JL3I480V120RE3F7SN

Features

- Low Switching Losses
- Low Inductive Design
- Integrated NTC



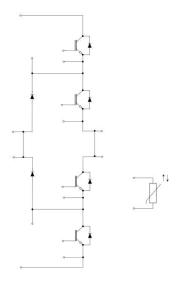
LE3 Pack

Typical Applications

- Solar Applications
- 3-level-applications Converters
- UPS Systems

MARKING DIAGRAM

JINLAN = Company Name


JL3I480V120RE3F7SN = Specific Device Code

YYWW = Year and Work Week Code

XXXXX =Serial Number

QR code = Custom Assembly Information

Description

Package Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS,f=50Hz,t=60s	4	kV
Creepage distance	d _{creep}	terminal to heatsink	14.2	mm
Creepage distance	d _{creep}	terminal to terminal	6.8	mm
Clearance	d _{clear}	terminal to heatsink	12.4	mm
Clearance	d _{clear}	terminal to terminal	5.5	mm
Comparative tracking index	СТІ		≥600	
(electrical)				

Package Characteristic values

Parameter	Symbol	Note or test condition		Note or test condition			Values		Unit
				Min.	Тур.	Max.			
Mounting torque for module mounting	М	-Mounting according to valid application note	M5, Screw	3		5	Nm		
Flatness of base plate						0.3	mm		
Weight	G				250		g		

MAXIMUM RATINGS (Note 1)

Symbol	Symbol Rating		Unit
GBT (Q1,Q4)		<u>'</u>	
Vces	Collector-Emitter Voltage	1200	V
V _{GE}	Gate- Emitter Voltage	±30	V
Ic	Continuous Collector Current @ $Tc = 80^{\circ}C$, $T_{J} = 175^{\circ}C$	480	А
I _{C(RM)}	T _p =1ms	960	А
T _J Junction Temperature		-40 to +175	°C
GBT (Q2, Q3)			
V _{CES}	Collector-Emitter Voltage	1200	V
V _{GE}	Gate- Emitter Voltage	±30	V
Ic	Continuous Collector Current @ $Tc = 80^{\circ}C$, $T_{J} = 175^{\circ}C$	480	А
I _{C(RM)}	T _p =1ms	960	А
TJ	Junction Temperature	-40 to +175	°C

DIODE (D5, D6)

V_{RRM}	Peak Repetitive Reverse Voltage 1200			
I _F	Continuous Forward Current @ T _c = 80°C (T _J = 175°C)	640	Α	
I _{FRM}	T _p =1ms	1280	Α	
TJ	Junction Temperature	-40 to +175	°C	

INVERSE DIODES (D1, D2,D3, D4)

V_{RRM}	Peak Repetitive Reverse Voltage 1200			
I _F	Continuous Forward Current @T _J = 150°C 480			
I _{FRM}	Repetitive Peak Forward Current @T _J = 150°C 960		Α	
TJ	Junction Temperature	-40 to +175	°C	

THERMAL PROPERTIES

T _{stg}	Storage Temperature Range	-40 to 125	°C
T_{vjop}	Temperature under switching condition	-40 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING RANGES

Symbol	Rating	Min	Max	Unit
T_J	Module Operating Junction Temperature	-40	175	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

Jinlan Power Semiconductor(Wuxi).co.,LTD

ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)(AC test is three-level test mode)

Symbol	Parameter	Test Cond	Test Condition		Тур	Max	Unit
GBT (Q1,Q	2,Q3,Q4)	•		•			
I _{CES}	Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} =1200V	′ ,T _{vj} = 25°C			800	μΑ
			T _J = 25°C		1.2		
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$V_{GE} = 15 \text{ V}, I_{C} = 400 \text{ A}$	T _J = 150°C		1.4		V
		45.77 400.4	T _J = 25°C		1.6	2.2	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$V_{GE} = 15 \text{ V}, I_{C} = 480 \text{ A}$	T _J = 150°C		1.8		V
V _{GE(TH)}	Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 15 \text{ mA}$		4.0	5.0	6.0	V
R _{Gint}	Internal Gate Resistance	T _{vj} = 25 °C			0.5		Ω
I _{GES}	Gate Leakage Current	$V_{GE} = \pm 20 \text{ V}, V_{CE} = 0 \text{ V}$	V			400	nA
t _{d(on)}	Turn-On Delay Time	T _J = 25°C V _{CE} =600 V, I _C =240A	T _J = 25°C				
tr	Rise Time	$V_{GE} = \pm 15 \text{ V}, R_{Gon} = 4$			101		
t _{d(off)}	Turn-off Delay Time	$R_{Goff} = 4.7\Omega$			698		ns
t_{f}	Fall Time				62	-	
E _{on}	Turn-On Switching Loss per Pulse				11.3	I	mJ
E_{off}	Turn Off Switching Loss per Pulse				8.75	-	
$t_{\text{d(on)}}$	Turn-On Delay Time	T _J = 150°C V _{CE} =600 V, I _C =240A			220	ı	
tr	Rise Time	$V_{GE} = \pm 15 \text{ V}, R_{Gon} =$			111		
$t_{\text{d(off)}}$	Turn-off Delay Time	$R_{Goff} = 4.7\Omega$			767		ns
t _f	Fall Time				65		
Eon	Turn-on Switching Loss per Pulse				13.5		
E _{off}	Turn Off Switching Loss per Pulse		1		10.5		mJ
Ciss	Input Capacitance	V _{CE} = 25 V, V _{GE} = 0 V, f = 100 kHz			46.1	-	
Coss	Output Capacitance				1.09		nF
Crss	Reverse Transfer Capacitance		1		0.26		
Q_g	Total Gate Charge	V _{GE} = ± 15 V			1.423		μC
R _{thJC}	Thermal Resistance - Chip-to-Case				0.06		K/W

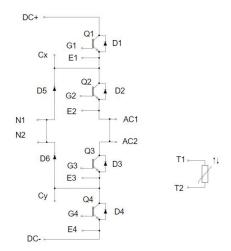
DIODE (D5. D6)

DIODE (DO,	50)						
V _F	Diode Forward Voltage	I _F = 480 A, V _{GE} = 0 V	T _J = 25°C		1.9	2.8	V
			T _J = 150°C		1.8		
Q _{rr}	Reverse Recovery Charge	$T_J = 25^{\circ}C$ $V_R = 600 \text{ V. } I_F = 240 \text{A}$			8.1		μC
I _{RRM}	Peak Reverse Recovery Current	$V_{GE} = \pm 15 \text{ V},$			72		Α
E _{REC}	Reverse Recovery Energy	$R_{Gon} = 4.7\Omega$, $R_{Goff} = 4$.	$R_{Gon} = 4.7\Omega$, $R_{Goff} = 4.7\Omega$		1.15		mJ
Q _{rr}	Reverse Recovery Charge	T _J = 150°C V _R =600 V, I _F =240A			18.2		μC
I _{RRM}	Peak Reverse Recovery Current	$V_{GE} = \pm 15 \text{ V},$			110		Α
E _{REC}	Reverse Recovery Energy	$R_{Gon} = 4.7\Omega$, $R_{Goff} = 4.7\Omega$			3.88		mJ
R _{thJC}	Thermal Resistance - Chip-to-Case				0.12		K/W

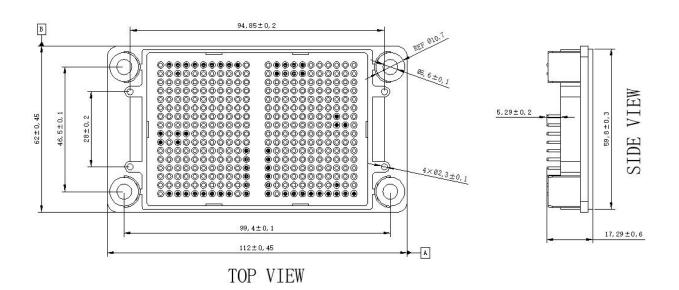
Jinlan Power Semiconductor(Wuxi).co.,LTD

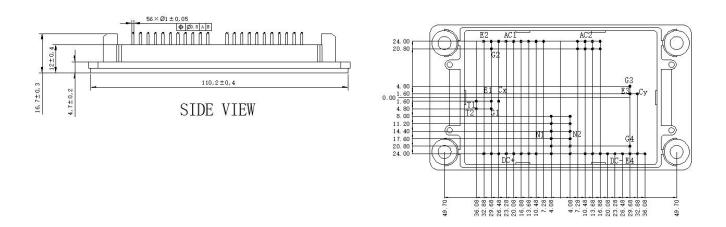
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) (AC test is three-level test mode)

Symbol	Parameter	Test Cond	lition	Min	Тур	Max	Unit
NVERSE D	IODES (D1, D2,D3, D4)						
V _F	Diode Forward Voltage	I _F = 480 A, V _{GE} = 0 V	T _J = 25°C		1.7	2.6	V
			T _J = 150°C		1.6		
Q _{rr}	Reverse Recovery Charge	T _J = 25°C			6.08		μC
I _{RRM}	Peak Reverse Recovery Current	$V_{GE} = \pm 15 \text{ V},$	$V_R = 600 \text{ V}, I_F = 240\text{A}$ $V_{GF} = \pm 15 \text{ V}.$		54		Α
E _{REC}	Reverse Recovery Energy	$R_{Gon} = 4.7\Omega$, $R_{Goff} = 4$.	.7Ω		0.86		mJ
Qrr	Reverse Recovery Charge	T _J = 150°C			13.6		μC
I _{RRM}	Peak Reverse Recovery Current	$V_R = 600 \text{ V}, I_F = 240 \text{A}$ $V_{GE} = \pm 15 \text{ V},$			82.8		Α
E _{REC}	Reverse Recovery Energy	$R_{Gon} = 4.7\Omega$, $R_{Goff} = 4.7\Omega$			2.91		mJ
R _{thJC}	Thermal Resistance - Chip-to-Case				0.18		K/W


THERMISTOR PROPERTIES

R ₂₅	Rated Resistance	T _C = 25°C		5		kQ
ΔR/R	Deviation of R100	T _C =100 ℃,R ₁₀₀ =493Ω	-5		5	%
P 25	Power Dissipation	TNTC = 25°C	-	-	60	mW
B _{25/50}	B-value	B (25/50), tolerance ±3%		3375		К
B25/100	B-value	B (25/100), tolerance ±3%	-	3433	-	К


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.



CIRCUIT DIAGRAM

PACKAGE DIMENSIONS

REVISION HISTORY

Document version	Date of release	Description of changes
Rev.00	2024-7-29	Preview

ATTENTION

- Any and all Jinlan power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your Jinlan Power Semiconductor representative nearest you before using any Jinlan power products described or contained herein in such applications.
- Jinlan Power Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Jinlan power modules described or contained herein.
- Specifications of any and all Jinlan power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- Jinlan Power Semiconductor (Wuxi).co.,LTD. strives to supply high-quality high-reliability products. However,any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all Jinlan power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of Jinlan Power Semiconductor (Wuxi).co.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Jinlan Power Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the Jinlan power product that you intend to use.
- This catalog provides information as of Jul.2024. specifications and information herein are subject to change without notice.