

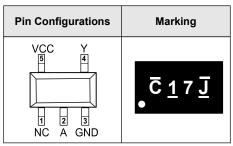
General Description

The operating voltage range of the SN74LVC1G17 single Schmitt-trigger buffer is 1.65 V to 5.5V.

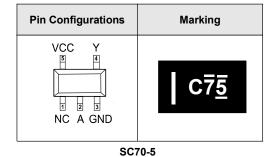
The SN74LVC1G17 device contains one buffer and performs the Boolean function Y=A.Because of the Schmitt-

Trigger inputs,the device may have different input threshold levels for positive-going (VT+) and negative-going (VT-) signals,to provide hysteresis (\triangle Vr)which makes the device tolerant to slow or noisy input signals.

This device is fully specified for partial-power-down applications using lof. The loff circuitry disables the outputs, preventing damaging current backlow through the device when it is powered down.


Features

- Schmitt-Trigger inputs provide hysteresis
- Supports 5V Vcc Operation
- Inputs Accept Voltages to 5.5V
- Max tpd of 5.4 ns at 3.3 V
- ±24-mA Output Drive at 3.3 V
- loff Supports Partial -Power-Down Mode


Applications

- AV Receivers
- Audio Docks:Portable
- Blu-ray Players and Home Theater
- MP3 Players/Recorders
- Personal Digital Assistants (PDAs)
- Power:Telecom/Server AC/DC Supply
- Solid State Drives (SSDs):Client and Enterprise
- TVs:LCD/Digital and High-Definition(HDTVs)
- Tablets:Enterprise
- Wireless Headsets, Keyboards, and Mice

Pinning and Marking

SOT-23-5

Pin Functions

P	in	Type	Description
Name	SOT23-5/SC70-5	туре	Description
NC	1	_	No internal connection
Α	2	I	Input
GND	3		Ground
Υ	4	0	Output
VCC	5	_	Positive Supply

Order information

Orderable Device	Package	Packing Option
SN74LVC1G17DBVR	SOT23-5	3000PCS
SN74LVC1G17DCKR	SC70-5	3000PCS

Absolute Maximum Ratings

	Parameter	Min	Max.	Unit	
Vcc	Supply volt	age range	-0.5	6.5	٧
Vı	Input volta	ge range	-0.5	6.5	V
Vo	Voltage range applied to any output in t	he high-impedance or power-off state	-0.5	6.5	V
Vo	Voltage range applied to any o	-0.5	V _{CC} +0.5	V	
lıĸ	Input clamp current	V<0		-50	mA
lok	Output clamp current	V ₀ <0		-50	mA
lo	Continuous o	utput current		±50	mA
	Continuous current throu	gh Vcc or GND		±100	mA
TJ	Junction temperature under bias			150	°C
T _{stg}	Storage tempe	erature range	- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Para	Min	Max	Unit	
Vcc	Supply	voltage	1.65	5.5	V
Vı	Input	voltage	0	5.5	V
Vo	Output	voltage	0	Vcc	V
		V _{CC} =1.65V		-4	
		V _{CC} =2.3V		-8	
Іон	High-level output current	evel output current Vcc=3V Vcc=4.5V		-16	mA
				-24	
				-32	
		V _{CC} =1.65V		4	
		V _{CC} =2.3V		8	
loL	Low-level output current	V -2V		16	mA
		Vcc=3V		24	
		V _{CC} =4.5V		32	
TA	Operating free-	-air temperature	-40	125	$^{\circ}$

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

Electrical Characteristics

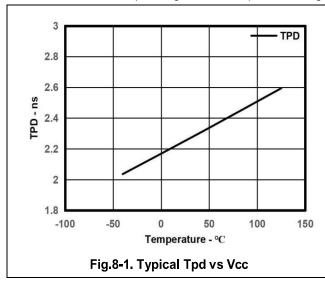
over recommended operating free-air temperature range (unless otherwise noted)

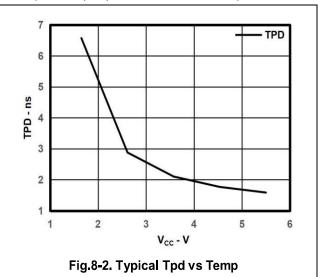
Dawawatan	Took Conditions	V V	-	-40°C to 85°	С	_	-40°C to 125°	,C	Had
Parameter	Test Conditions	V cc	Min	Тур	Max	Min	Тур	Max	Unit
		1.65 V	0.7		1.4	0.7		1.4	
V_{T+}		2.3 V	1		1.7	1		1.7	
Positive-going input threshold		3 V	1.3		2	1.3		2	V
voltage		4.5 V	1.9		3.1	1.9		3.1	
		5.5 V	2.2		3.7	2.2		3.7	
		1.65 V	0.25		0.7	0.25		0.7	
V _T _		2.3 V	0.4		1	0.4		1	
Negative-going input threshold		3 V	0.8		1.3	0.8		1.3	V
voltage		4.5 V	1.1		2	1.1		2	
		5.5 V	1.4		2.5	1.4		2.5	
		1.65 V	0.3		1	0.3		1	
		2.3 V	0.4		1	0.4		1	
ΔV_T Hysteresis $(V_{T+} - V_{T-})$		3 V	0.5		1	0.5		1	V
,		4.5 V	0.6		1	0.6		1	
		5.5 V	0.7		1.1	0.7		1.1	
	I _{OH} =— 100 μA	1.65 V to 5.5 V	Vcc-0.1			Vcc-0.1			- - - V
	I _{OH} =—4 mA	1.65 V	1.2			1.2			
Vон	I _{ОН} =—8 mA	2.3 V	1.9			1.9			
· Gi	I _{ОН} =— 16 mA	3 V	2.4			2.4			
	I _{OH} =-24 mA	3 V	2.3			2.3			
	I _{он} =-32 mА	4.5 V	3.8			3.8			
	I _{OL} =100 μA	1.65 V to 5.5 V			0.1			0.1	
	I _{OL} =4 mA	1.65 V			0.45			0.45	
Vol	I _{OL} =8 mA	2.3 V			0.3			0.3	V
	I _{OL} =16 mA	3 V			0.4			0.4	
	I _{OL} =24 mA	3 V			0.55			0.55	
	I _{OL} =32 mA	4.5 V			0.55			0.55	
lı A input	V _I =5.5 V or GND	0 to 5.5 V			±5			±5	μA
loff	V _I or V _O =5.5 V				±10			±10	μΑ
lα	V _I =5.5 V or GND, I _O =0				10			10	μA
Δ I cc	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND				500			500	μA
G	V _I =V _{CC} or GND			5			5		pF

⁽¹⁾ All unused digital inputs of the device must be held at V_{cc} or GND to ensure proper device operation.

Electrical Characteristics

Vcc=5.0V or 3.3V, Typical values are at T_A=+25°C. (unless otherwise noted)


						-40°C t	o 125°C				
Parameter	From (Input)	To (Output)		1.8 V 15 V		2.5 V .2 V		3.3 V .3 V		=5 V .5 V	Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
t _{pd}	А	Y	3.9	10.5	1.9	6.2	2.2	5.9	1.5	4.8	ns

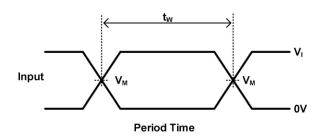

T_A=25°C

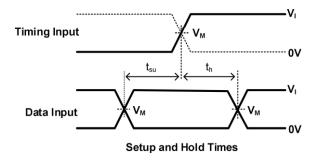
	Parameter		Test Conditions	Vcc=1.8 V	V _{CC} =2.5 V	V _{CC} =3.3 V	Vcc=5 V	Unit
			rest conditions	Тур	Тур	Тур	Тур	Oille
	C _{pd}	Power dissipation capacitance	f=10 MHz	20	30	35	50	pF

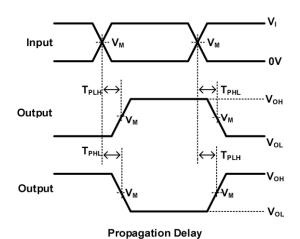
Typical Characteristics

Over recommended operating free-air temperature range, C_L=30 pF or 50 pF (unless otherwise noted).

Parameter Measurement Information




TEST	S1
T _{PHL} /T _{PLH}	OPEN
T _{PLZ} /T _{PZL}	V_{LOAD}
T _{PHZ} /T _{PZH}	GND



Parameter Measurement Information(Continued)

Vcc	INP	INPUTS		V _M V _{LOAD}	CL	R∟	VΔ
V CC	Vı	T _r /T _f	VIVI	V LOAD	OL .	INL	VΔ
1.8V±0.15V	Vcc	≤2ns	V _{CC} /2	2×V _{CC}	30pF	1kΩ	0.15V
2.5V±0.15V	Vcc	≤2ns	V _{cc} /2	2×V _{CC}	30pF	500Ω	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.15V	Vcc	≤2,5ns	V _{CC} /2	2×V _{CC}	50pF	500Ω	0.3V

 $T_{PZH} \longleftrightarrow$ Output Waveform 2 TPZL Output Waveform 1

for Output and Inverted Output

Enable and Disable Times Low-And High-Level Enabling

Notes: A. C_L includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.

En Input

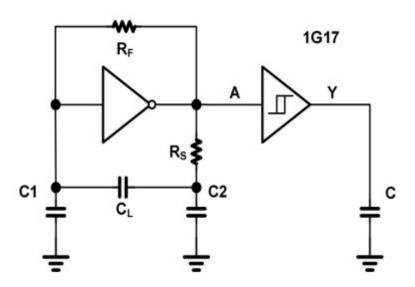
Waveform 2 is for an output with internal conditions such that the F. tpz_ and tpz_H are the same as ten. output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.

- G. t_{PLH} and t_{PHL} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all device.

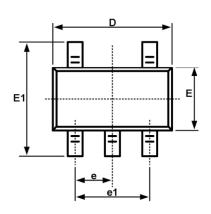
Feature Description

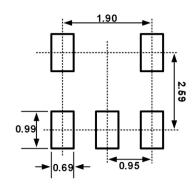
The device is designed for 1.65V to 5.5V V_{CC} operation and it allows down voltage translation from 5V to 3.3V, or 3.3V to 1.8V. The input voltage of SN74LVC1G17 accepts to 5.5V.

The SN74LVC1G17 has power-down protection (off) and Schmitt-trigger input. Ioff feature allows voltage on the inputs and outputs when Vcc is 0 V, and is able to reduce leakage when Vcc is 0V. Schmitt-Trigger input can improve the noise immunity capability.

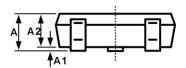

Device Functional Modes

Input A	Output Y
Н	Н
L	L

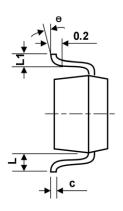

Application Information

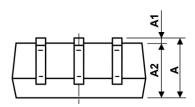

The SN74LVC1G17 is a high drive CMOS device that can be used for a multitude of buffer type functions where the input is slow or noisy. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high-speed applications up to 100 MHz. The inputs are 5.5 V tolerant allowing it to translate down to VCC. channel input elements, such as push buttons or rotary knobs, offer simple ways to interact with electronic systems. Typically, these elements have recoil or bouncing, where the mechanical element makes and breaks contact multiple times during human interaction. This bouncing can cause one or more repeated signals to be passed, triggering multiple actions when only a single input was intended. One potential solution to mitigating these multiple inputs is by utilizing a Schmitt-trigger to create a debounce circuit.

Typical Power Button Circuit



Recommended Land Pattern (Unit: mm)




Cumhal	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0,041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0,111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950	BSC	0.03	7BSC
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0.600	REF	0.024REF	
θ	0°	8°	0°	8°

Package Outline SC70-5

av mala al	Dimension I	n Millimeters	Dimension	s In Inches
symbol	Min	Max	Min	Max
A	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650	TYP	0.026	6TYP
e1	1.200	1.400	0.047	0.055
L	0.525	REF	0.02	İREF
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°