

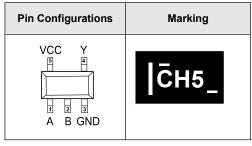
General Description

This single 2-input exclusive-OR gate is designed for 1.65V to 5.5V Vcc operation.

The SN74LVC1G86 performs the Boolean function $Y=A \oplus B$ or $Y=\overline{AB}+A\overline{B}$ in positive logic. A common application is as a true/complement element. If the input is low, the other input is reproduced in true fom at the output. If the input is highthe signal on the other input is reproduced inverted at the output. This device is fully specified for partial-power-down applications using lof. The loff circuitry disables the outputs, preventing damaging current back flow through the device when it is powered down.

Features

- Operate from 1.65 Vto 5.5V
- Specified from -40 °C to 85 °C
- Inputs accept voltages to 5.5V
- Maxtpa of 3.7ns at 3.3V
- Low powerconsumption,10µA max lcc
- ±24mA output drive at 3.3V
- loffs Supports partial-power-down mode


Applications

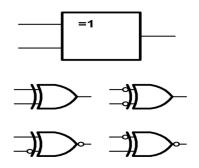
- Wireless headsets
- Motor drives andcontrols
- TVs
- Set-top boxes
- Audio

Pinning and Marking

Pin Configurations	Marking
VCC Y 5 4 1 2 3 A B GND	<u>¯</u> 8 6 <u>J</u>

SOT-23-5

SC70-5


Pin Functions

Р	in	Type	Description	
Name	SOT23-5/SC70-5	rype	Description	
Α	1	I	Input A	
В	2	I	Input B	
Υ	4	0	Output Y	
VCC	5	-	Positive Supply	
GND	3	-	Ground	

Order information

Orderable Device	Package	Packing Option
SN74LVC1G86DBVR	SOT23-5	3000PCS
SN74LVC1G86DCKR	SC70-5	3000PCS

Absolute Maximum Ratings

	Parameter	Min	Max.	Unit	
Vcc	Supply volt	age range	-0.5	6.5	>
VI	Input volta	ge range	-0.5	6.5	٧
Vo	Voltage range applied to any output in t	he high-impedance or power-off state	- 0.5	6.5	٧
Vo	Voltage range applied to any o	-0.5	Vcc+0.5	٧	
lĸ	Input clamp current	V < 0		-50	mA
lok	Output clamp current	Vo<0		-50	mA
lo	Continuous o	utput current		±50	mA
	Continuous current throu		±100	mA	
TJ	Junction temperature under bias			150	Ç
T _{stg}	Storage temporal	erature range	- 65	150	Ç

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESDRatings

	Value	Unit		
\/(EQD)	/(ESD) Electrostatic discharge -	Human-body model (HBM)		V
V(ESD)		Charged-device model (CDM)	1.25 K	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parar	Min.	Max.	Unit	
Vcc	Supply	1.65	5.5	V	
		V _{CC} =1.65V to1.95V	0.65×V _{CC}		
V	High-Level Input Voltage	V _{CC} =2.3V to 2.7V	1.7		
V _H	nigri-Level Iriput Voltage	V _{CC} =3V to 3.6V	2]
		V _{CC} =4.5V to 5.5V	0.7×Vcc		
		V _{CC} =1.65V to1.95V		0.35×V _{CC}	
M	Lauria valimenti/altana	V _{CC} =2.3V to 2.7V		0.7	
VL	Low-Level Input Voltage	V _{CC} =3V to 3.6V		0.8	- V
		V _{CC} =4.5V to 5.5V		0.3×Vcc	
Vı	Input \	√oltage	0	5.5	V
Vo	Output	Voltage	0	Vcc	V
	High-Level Output Current	V _{CC} =1.65V		- 4	
		V _{CC} =2.3V		-8	mA
loн		V _{CC} =3V		-16	
				-24	
		V _{CC} =4.5V		-32	
		V _{CC} =1.65V		4	
		V _{CC} =2.3V		8	
loL	Low-Level Output Current	V 0V		16	mA
		V _{CC} =3V		24	
		V _{CC} =4.5V		32	1
		Vcc=1.8V±0.15V,2.5V±0.2V		20	
Δt/Δν	Input Transition Rise or Fall Rate	Vcc=3.3V±0.3V		10	ns/V
		V _{CC} =5V±0.5V		5	1
TA	Operating Free-air Temperature	A ll Other Packages	40	125	°C

⁽¹⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

Electrical Characteristics

FULL=-40°C to +125°C, Typical values are at TA=+25°C. (unless otherwise noted)

Parameters	Symbol	Conditions	Vcc	TA	Min.	Тур.	Max.	Unit
Output								
		I _{OH} =-100μA	1.65V to 5.5V		Vcc-0.1			
		I _{OH} =–4mA	1.65		1.2			
High Loyal Output Valtage	Vон	I _{OH} =—8mA	2.3	FULL	1.9			V
High-Level Output Voltage	VOH	I _{OH} =–16mA	2	FULL	2 <u>.</u> 4]
		I _{OH} =-24mA	3		2.3			
		I _{он} =–32mA	4.5		3.8			
		I _{OL} =100μA	1.65V to 5.5V				0.1	
	VoL	I _{OL} =4mA	1.65	- FULL			0.45	- V
Lavel aval Output Valtage		I _{OL} =8mA	2.3				0.3	
Low-Level Output Voltage		Iα=16mA	3				0.4	
		Ia=24mA	3				0.55	
		Ia=32mA	4.5				0.55	
Off-State Current	off	V _I or V _O =5.5V	0V	FULL			±10	μΑ
		Input						
Input Leakage Current	lı	A or B input, V _I =5.5V or GND	0V to 5.5V	FULL			±5	μΑ
Input Capacitance	G	V _I =V _{CC} or GND	3.3V	FULL		6		pF
Power Supply								
Power Supply Range Vcc		1.65V to 5.5V	FULL	1 . 65		5.5	V	
Supply Current	lω	V _I =5.5 V or GND, I ₀ =0	1.65V to 5.5V	FULL			10	μΑ
Delta Power Current	Δlcc	One Input at V _{CC} – 0.6 V, Other Inputs at V _{CC} or GND	3V to 5.5V	FULL			500	μΑ

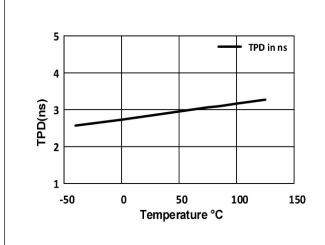
⁽¹⁾ All unused digital inputs of the device must be held at Vcc or GND to ensure proper device operation.

Switching Characteristics

Over recommended operating free-air temperature range, C_L=30pF or 50 pF (unless otherwise noted)

					–40°C to	+125°C			
Parameter	From(Input)	To(Output)	Vcc=1.8V±0.15V		V _{CC} =1.8V±0.15V V _{CC} =2.5V±0.2V		V _{cc} =3.3V±0.3V		Units
			Min	Max	Min	Max	Min	Max	
t _{pd}	A or B	Y	2.1	10	1	4.9	0.6	3.7	ns

Operating Characteristics


TA=-40°C to +125°C

Parameter		Darameter	Test Conditions	V _{CC} =1.8V	V _{CC} =2.5V	V _{CC} =3.3V	Units
	Parameter		rest Conditions	Тур	Тур	Тур	Ullits
	C _{pd} Power Dissipation Capacitance		f=10Mhz	20	20	20	pF

Typical Characteristics

Typical values are at TA=+25°C (unless otherwise noted)

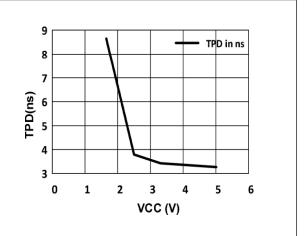
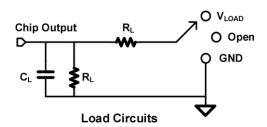
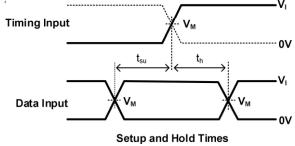
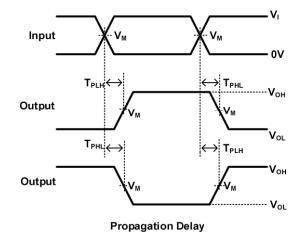
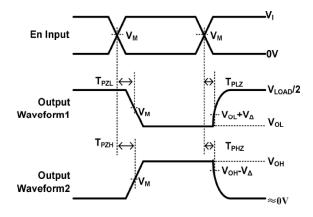



Fig.8-2. TPD Across Vcc at 25°C

Parameter Measurement Information


TEST	S1
T _{PHL} /T _{PLH}	OPEN
T _{PLZ} /T _{PZL}	V_{LOAD}
T _{PHZ} /T _{PZH}	GND


Vcc	Inp	outs	V _M	V _{LOAD}	C _L	R.	VΔ
VCC	Vı	T _f /T _f	VIVI	V LOAD	OL	1	VA
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	15pF	1ΜΩ	0.15V
2.5V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	15pF	1ΜΩ	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	15pF	1ΜΩ	0.3V
5V±0.15V	Vcc	≤2.5ns	Vcc/2	2×V _{CC}	15pF	1ΝΩ	0.3V



Parameter Measurement Information(Continued)

Enable and Disable Times Low-And High-Level Enabling

- Notes:A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

for Output and Inverted Output

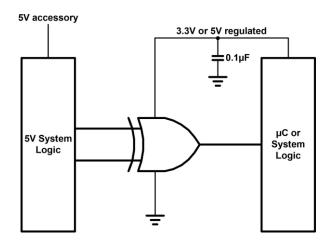
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .

Waveform 2 is for an output with internal conditions such that the F. tpz and tpz are the same as ten. output is high, except when disabled by the output control.

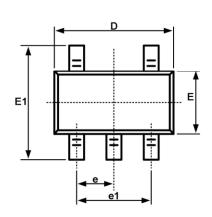
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.
- G. tplh and tphl are the same as tpd.
 - H. All parameters and waveforms are not applicable to all device.

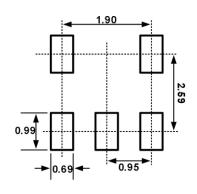
Feature Description

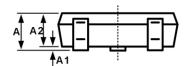
The SN74LVC1G86 device performs the Boolean function Y = AB + AB in positive logic. This single 2-input exclusive-OR gate is designed for 1.65V to 5.5V V_{CC} operation. A common application is as a true and complement element. If the input is low, the other input is reproduced in true form at the output. If the input is high, the signal on the other input is reproduced inverted at the output. This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

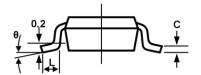

Device Functional Modes

Inputs		Output
A	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

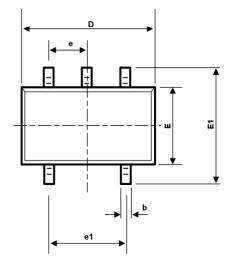

Application Information

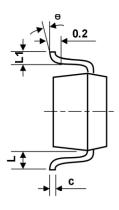

The SN74LVC1G86 device can accept input voltages up to 5.5 V at any valid Vcc which makes the device suitable for down translation. This feature of the SN74LVC1G86 makes it ideal for various bus interface applications.

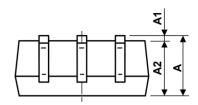

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.



Recommended Land Pattern (Unit: mm)






Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1,500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950BSC		0.037BSC	
e1	1,800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
L1	0.600REF		0.024REF	
θ	0°	8°	0°	8°

Package Outline SC70-5

symbol	Dimension In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650TYP		0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.021REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°