

GNSS & WiFi Ceramic Chip Antenna Model: AA089 TELA Series

Product Number: H2U94W1H1G0300

REFERENCE SPECIFICATION

Unique Electronics You Need

Version: 10701A rev-E

Electrical Characteristics

Radiation Pattern

Layout

Tuning

Packing

Notes

Table of Contents

1	Intr	oduction	3
2	Elec	trical Characteristics	4
	2.1	Table with electrical properties for Individual signal mode:	4
	2.2	Table with electrical properties for Combined signal mode:	5
	2.3	Return Loss (S ₁₁) of GPS band for Individual signal mode	6
	2.4	VSWR (S ₁₁) of GPS band for Individual signal mode	6
	2.5	Return Loss (S ₁₁) of WiFi (B.T.) band for Individual signal mode	7
	2.6	VSWR (S ₁₁) of WiFi (B.T.) band for Individual signal mode	7
	2.7	Isolation between GPS Band & WiFi (B.T.) Band	8
	2.8	Return Loss (S ₁₁) of GPS band for Combined signal mode	9
	2.9	VSWR (S ₁₁) of GPS band for Combined signal mode	9
	2.10	Efficiency Table for Individual signal mode	. 10
	2.11	Efficiency Table for Combined signal mode	. 10
	2.12	Efficiency vs. Frequency for Individual signal mode	. 11
	2.13	Efficiency vs. Frequency for Combined signal mode	. 12
	2.14	Radiation Pattern for Individual signal mode (with 80x40mm ² Evaluation Board)	. 13
	2.15	Radiation Pattern for Combined signal mode (with 80x40mm ² Evaluation Board)	. 15
3	Lay	out	. 17
	3.1	Antenna Dimensions	. 17
	3.2	Evaluation Board for Individual Signal Input	. 18
	3.3	Evaluation Board for Combined Signal Input	. 18
	3.4	Solder Land Pattern	. 19
4	Fred	quency tuning	. 20
5	Pac	king	. 21
	5.1	Packing Process	. 24
6	Not	es	. 25
	6.1	Typical Soldering Profile for Lead-free Process	. 25
	6.2	Operating and storage conditions:	. 26
	6.3	Installation guide:	. 26
	6.4	Reminders for users of Unictron's AAOS9 ceramic chin antennas	26

Electrical Characteristics

Radiation Pattern

Lavout

Tuning

Packing

Notes

1 Introduction

Unictron's AA089 ceramic chip antenna is designed for GPS & Wi-Fi (B.T.) 2.4GHz band applications, covering frequencies 1575.42 MHz & 2400~2484MHz. Fabricated with proprietary design and processes, AA089 shows excellent performance and is fully compatible with SMT processes which can decrease the assembly cost and improve device's quality and consistency.

Features

- * Stable and reliable in performances
- * Good isolation between GPS bands and WiFi (Bluetooth) bands
- * Low profile, compact size
- * RoHS compliance
- * SMT processes compatible
- *Compatible with individual signal input or combined signal input

Applications

- *For GPS applications
- *For Wi-Fi/ Bluetooth/ BLE/ ZigBee/ 2.4GHz applications
- *For wireless devices when both GPS and Wi-Fi(Bluetooth) functions are needed, e.g., Smart phone, Tablet PC, Tracker, Real time video recorder. Smart watch, etc.

Electrical Characteristics

2 Electrical Characteristics

2.1 Table with electrical properties for Individual signal mode:

Electrical Specifications (Evaluation Board Dimensions: 80 x 40 mm²)

Electrical Table (GPS Band)								
Characteristics		Specifications	Unit					
Outline Dimensi	ons	3.2 x 1.6 x 0.5	mm					
Ground Plane Di	mensions	80 x 40	mm					
Working Freque	ncy	MHz						
Isolation (S ₂₁)	≤ -20 (typical)							
VSWR (@center	frequency)*	2 Max						
Characteristic In	npedance	50	Ω					
Polarization		Linear Polarization						
Peak Gain	(@1575.42 MHz)	1.3 (typical)	dBi					
Efficiency	(@ 1373.42 (VII 12)	61 (typical)	%					

^{*}Center frequency means the frequency with the lowest value in return loss of the chip antenna on the evaluation board.

Electrical Table (WiFi & B.T. Band)								
Characteristics		Specifications	Unit					
Working Freque	ncy	2400 – 2500	MHz					
Isolation		≤ -16 (typical)	dB					
VSWR (@center	frequency)*	2 Max						
Characteristic In	npedance	50	Ω					
Polarization		Linear Polarization						
Peak Gain	(@2442 MHz)	1.8 (typical)	dBi					
Efficiency	(@ 2 1 12 141112)	68 (typical)	%					

^{*}Center frequency means the frequency with the lowest value in return loss of the chip antenna on the evaluation board.

Electrical Characteristics

Radiation Pattern

Layout

Tuning | Packing

Notes

2.2Table with electrical properties for Combined signal mode:

Electrical Specifications (Evaluation Board Dimensions: 80 x 40 mm²)

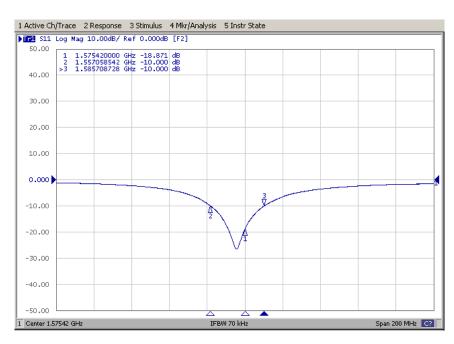
Electrical Table (GPS Band)								
Characteristics		Specifications	Unit					
Outline Dimensi	ons	3.2x1.6x0.5	mm					
Ground Plane Di	mensions	80x40	mm					
Working Freque	ncy	1575.42	MHz					
VSWR (@ center f	requency)*	2 Max (typical)						
Characteristic In	npedance	50	Ω					
Polarization		Linear Polarization						
Peak Gain	(@1575.42 MHz)	2.0 (typical)	dBi					
Efficiency	(@ 13/3.42 141112)	@ 1575.42 MH2) 65 (typical)						

^{*}Center frequency means the resonance frequency of chip antenna on the evaluation board.

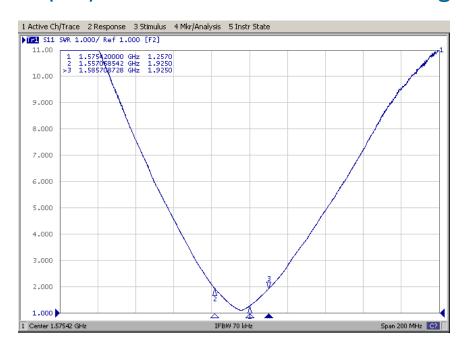
Electrical Table (WiFi & B.T. Band)								
Characteristics		Specifications	Unit					
Working Freque	ncy	2400 – 2500	MHz					
VSWR (@ center f	requency)*	2 Max (typical)						
Characteristic Im	npedance	50	Ω					
Polarization		Linear Polarization						
Peak Gain	(@2442 MHz)	-0.4 (typical)	dBi					
Efficiency	(62772 171112)	(@ 2442 MH2) 54 (typical)						

^{*}Center frequency means the resonance frequency of chip antenna on the evaluation board.

Electrical Characteristics


Radiation Pattern

Layout

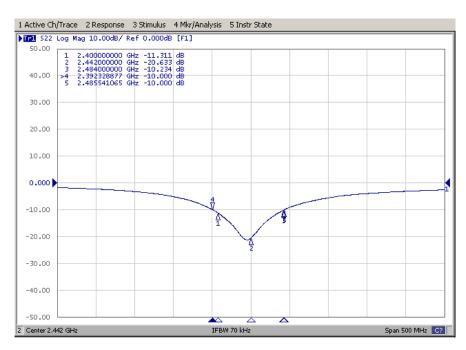

Tuning | Packing

Notes

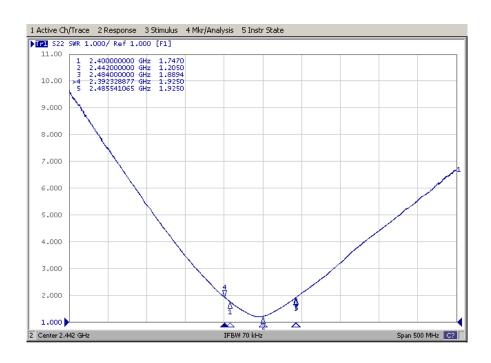
2.3 Return Loss (S₁₁) of GPS band for Individual signal mode

2.4 VSWR (S₁₁) of GPS band for Individual signal mode

Electrical Characteristics


Radiation Pattern

Layout


Tuning | Packing

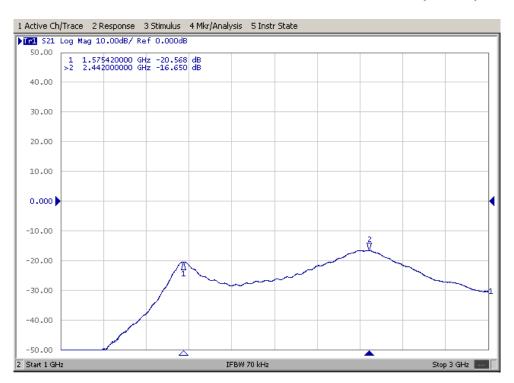
Notes

2.5 Return Loss (S_{11}) of WiFi (B.T.) band for Individual signal mode

2.6 VSWR (S₁₁) of WiFi (B.T.) band for Individual signal mode

Electrical Characteristics

Radiation Pattern


Layout

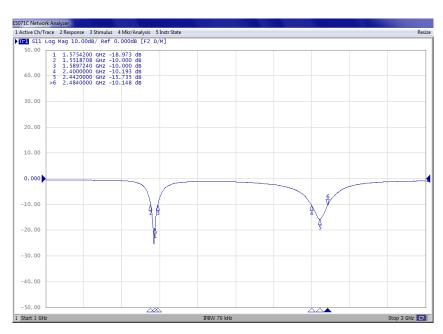
Tuning

Packing

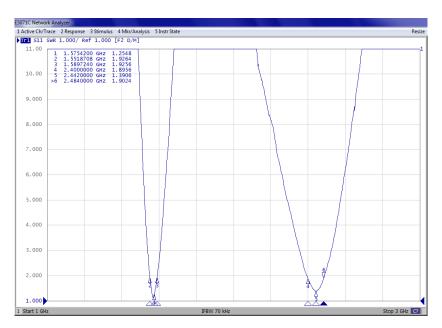
Notes

2.7 Isolation between GPS Band & WiFi (B.T.) Band

Electrical Characteristics


Radiation Pattern

Layout


Tuning | Packing

Notes

2.8Return Loss (S_{11}) of GPS band for Combined signal mode

2.9 VSWR (S₁₁) of GPS band for Combined signal mode

Electrical Characteristics

Radiation Pattern

Layout

Tuning Packing

Notes

2.10 Efficiency Table for Individual signal mode

GPS:

Frequency(MHz)	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580
Efficiency(dB)	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.2	-2.2	-2.2
Efficiency(%)	61.0	61.4	61.7	61.6	61.4	61.4	61.3	61.0	60.7	60.6	60.0
Gain(dBi)	1.4	1.4	1.4	1.4	1.3	1.3	1.3	1.2	1.2	1.1	1.1

WiFi (B.T.)

Frequency(MHz)	2400	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472	2484	2500
Efficiency(dB)	-2.2	-2.1	-2.0	-1.9	-1.8	-1.7	-1.7	-1.6	-1.7	-1.6	-1.6	-1.6	-1.6	-1.8	-2.2	-2.5
Efficiency(%)	59.6	61.1	63.8	64.7	66.1	67.7	68.1	68.7	68.1	68.9	69.0	69.2	68.5	66.4	59.7	56.6
Gain(dBi)	1.7	1.6	1.7	1.7	1.7	1.7	1.8	1.8	1.7	1.7	1.8	1.8	1.8	1.8	1.6	1.5

2.11 Efficiency Table for Combined signal mode

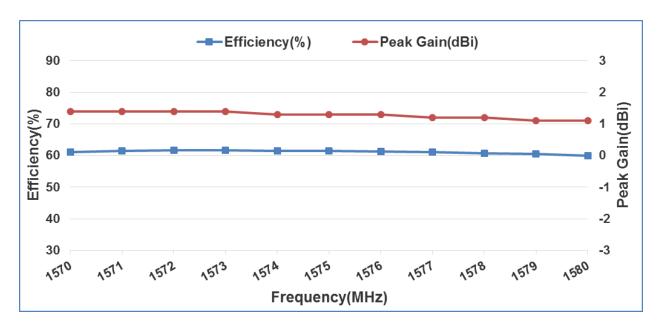
GPS:

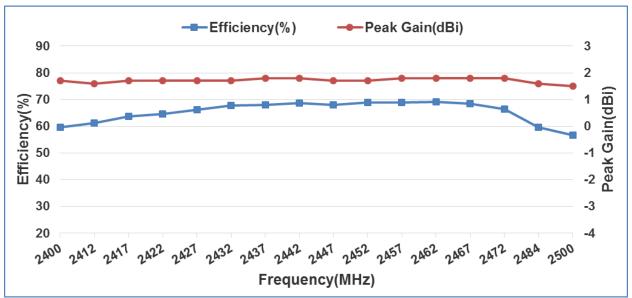
Frequency(MHz)	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580
Efficiency(dB)	-2.0	-1.9	-1.9	-1.9	-1.9	-1.8	-1.8	-1.8	-1.8	-1.7	-1.8
Efficiency(%)	63.7	64.4	65.0	65.0	65.2	65.5	65.9	66.4	66.7	67.0	66.8
Gain(dBi)	2.0	2.0	2.0	2.0	2.0	2.0	2.1	2.1	2.2	2.2	2.1

WiFi (B.T.)

Frequency(MHz)	2400	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472	2484	2500
Efficiency(dB)	-3.2	-3.0	-2.9	-2.7	-2.6	-2.6	-2.6	-2.6	-2.8	-2.8	-2.8	-2.8	-2.8	-2.9	-3.3	-3.4
Efficiency(%)	48.2	50.2	51.8	53.3	54.5	55.5	55.2	54.7	53.0	52.8	52.6	52.8	52.8	51.1	47.1	45.2
Gain(dBi)	-1.2	-1.0	-0.9	-0.8	-0.6	-0.5	-0.4	-0.4	-0.5	-0.5	-0.4	-0.5	-0.5	-0.6	-0.9	-1.1

Electrical Characteristics


Radiation Pattern

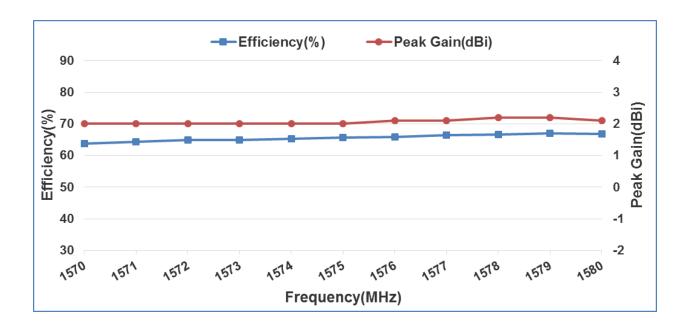

Layout

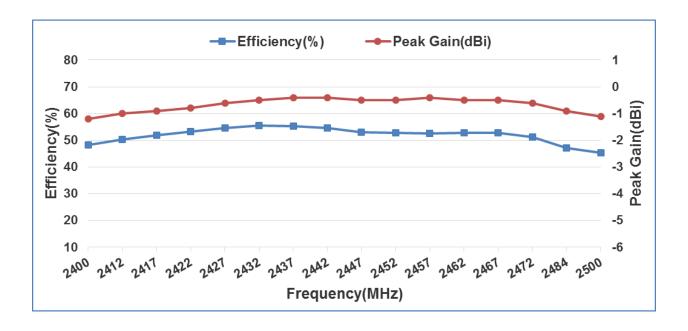
Tuning Packing

Notes

2.12 Efficiency vs. Frequency for Individual signal mode

Electrical Characteristics


Radiation Pattern

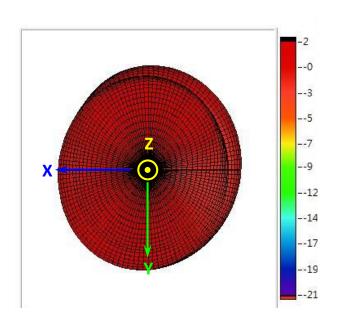

Layout

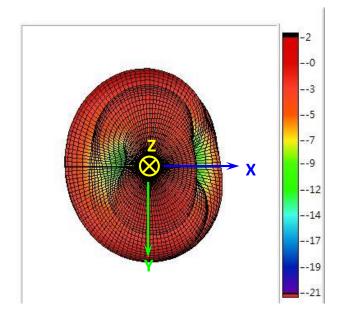
Tuning Packing

Notes

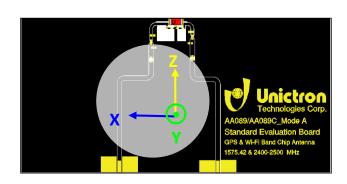
2.13 Efficiency vs. Frequency for Combined signal mode

Radiation Pattern

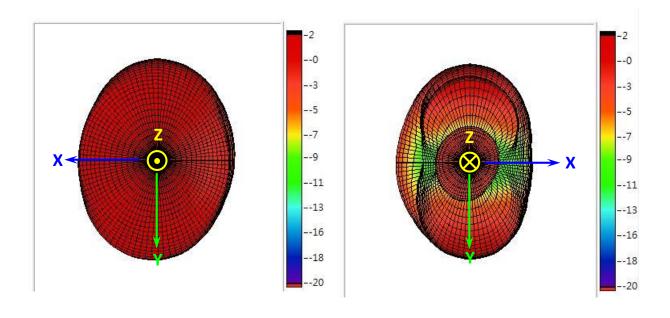

Layout

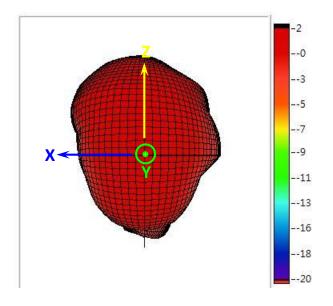

Tuning Packing

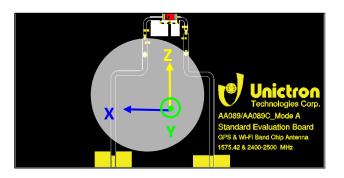

Notes


2.14 Radiation Pattern for Individual signal mode (with 80x40mm² Evaluation Board)

3D Gain Pattern @ 1575 MHz (unit: dBi)


Radiation Pattern

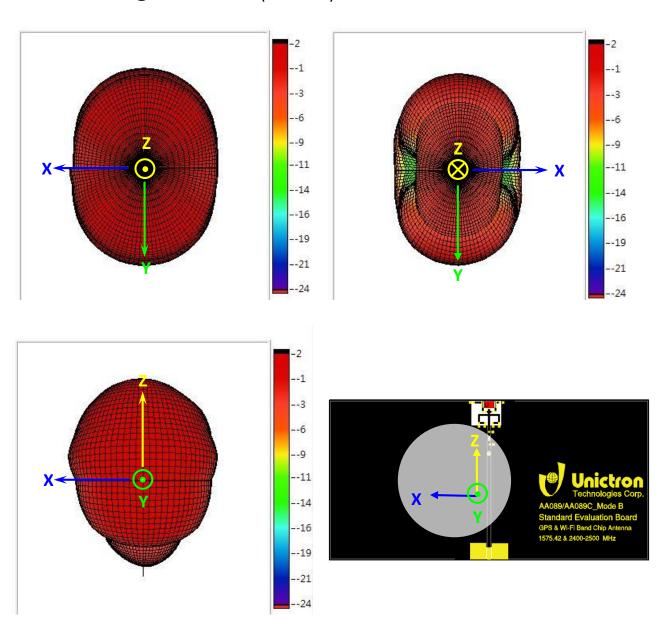

Layout


Tuning Packing

Notes

3D Gain Pattern @ 2442 MHz (unit: dBi)

Radiation Pattern

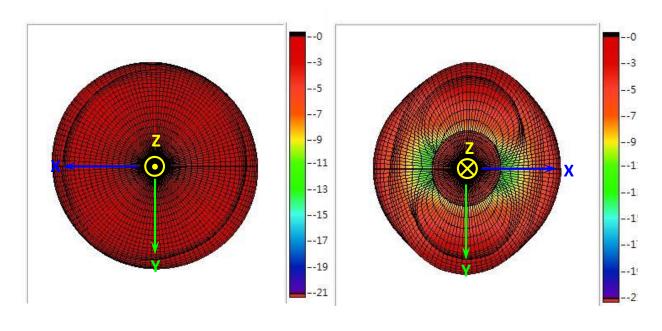

Layout

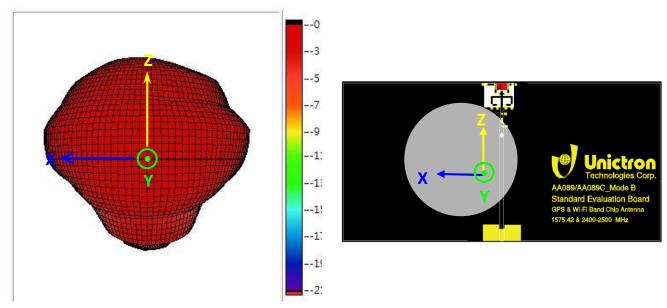
Tuning Packing

Notes

2.15 Radiation Pattern for Combined signal mode (with 80x40mm² Evaluation Board)

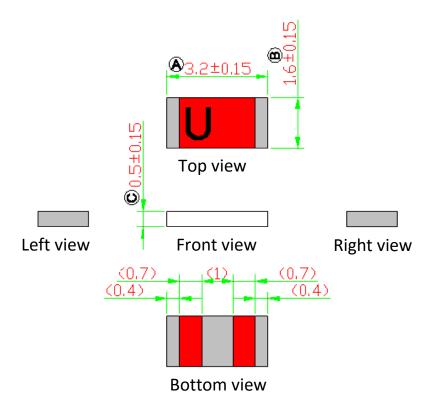
3D Gain Pattern @ 1575.42 MHz (unit: dBi)

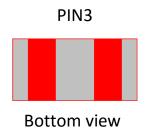

Radiation Pattern


Layout

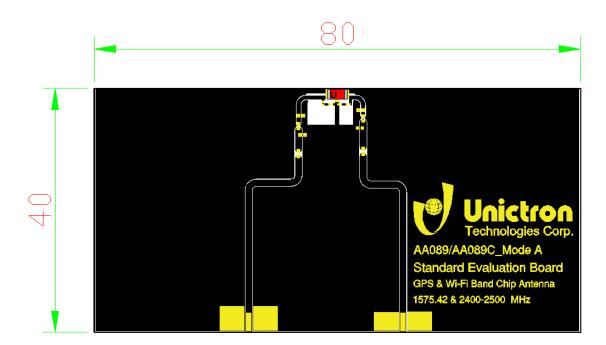
Tuning Packing

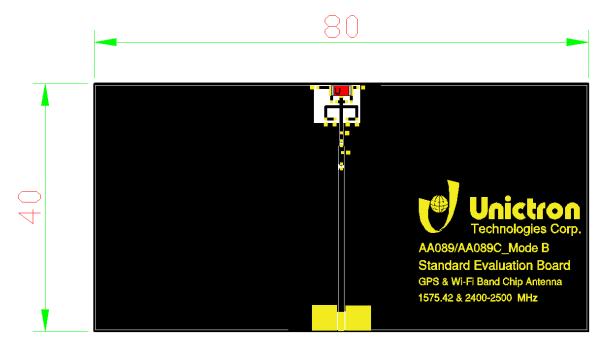
Notes


3D Gain Pattern @ 2442 MHz (unit: dBi)


3 Layout

3.1 Antenna Dimensions


PIN Definitions


PIN	1	2	3
Soldering PAD (Individual signal)	GPS Signal	Wi-Fi & B.T. Signal	Tuning / Ground
Soldering PAD (Combined signal)	Tuning / Ground	Tuning / Ground	GPS & Wi-Fi(B.T.)
			Signal

3.2 Evaluation Board for Individual Signal Input

Unit: mm

3.3 Evaluation Board for Combined Signal Input

Unit: mm

Radiation Pattern

Layout

Tuning Packing

Notes

3.4 Solder Land Pattern

Request detailed solder land pattern layout from Unictron at <u>e-sales@unictron.com</u> Please let us know whether you are implementing the individual signal input (one for GPS and one for WiFi/BT) or combined signal input (one signal input for both GPS and WiFi/BT).

Electrical Characteristics

Radiation Pattern

Layout

Tuning Packing

Notes

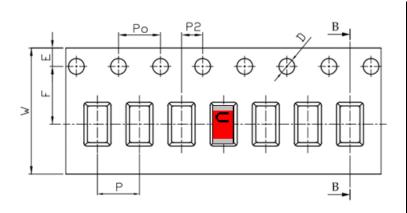
4 Frequency tuning

The center frequency of GPS and WiFi (B.T.) band can be adjusted by antenna's frequency tuning elements. The value of frequency tuning elements depends on the device environment (e.g. size of the PCB, antenna placement on the PCB). Unictron will help you with tuning service based on your PCB layout. For the best results we recommend to do tuning on the real device, please send us your demo device for evaluation.

The standard values of matching and tuning components used on the Unictron's evaluation boards are available upon request. Please let us know (e-sales@unictron.com) whether you are implementing individual signal input (one for GPS and one for WiFi/BT) or combined signal input (one signal input for both GPS and WiFi/BT).

Radiation Pattern

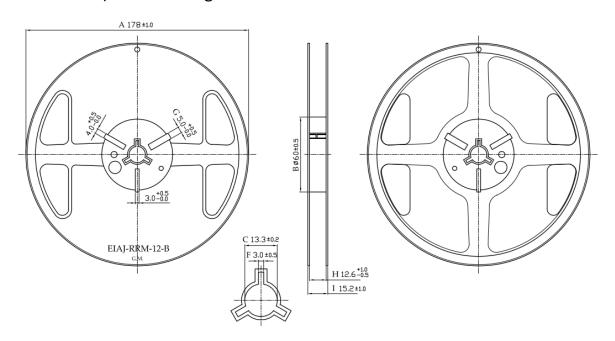
Layout


Tuning Packing

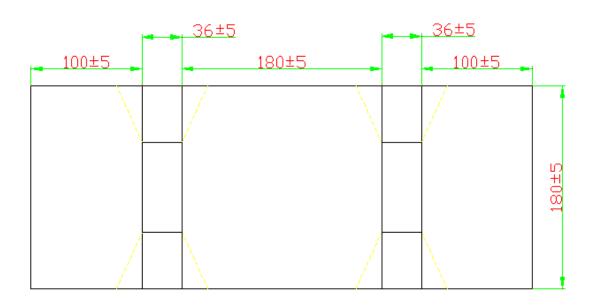
Notes

5 Packing

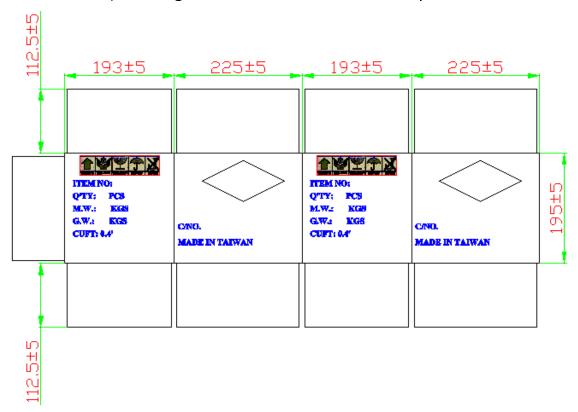
- 1. Quantity/Reel: 5000 pcs/Reel
- 2. Plastic tape:


a) Tape drawing:

b) Tape dimensions (unit: mm)


Feature	Specifications	Tolerances		
W	12.00	±0.30		
Р	4.00	±0.10		
E	1.75	±0.10		
F	5.50	±0.10		
P2	2.00	±0.10		
D	1.50	+0.10 -0.00		
Ро	4.00	±0.10		
10Po	40.00	±0.20		

c) Reel Drawing

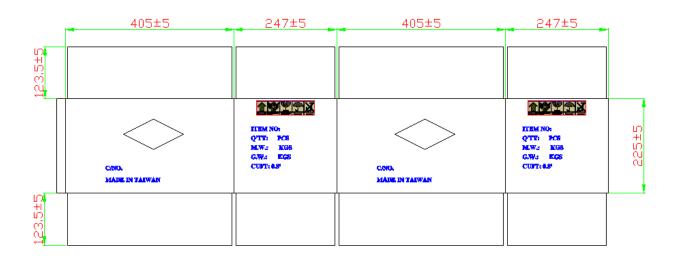


Tuning

d) Drawing of small size carton in developed view

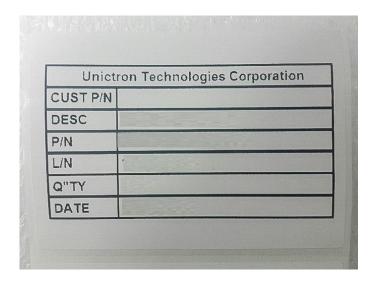
e) Drawing of middle size carton in developed view

Radiation Pattern


Layout

Tuning

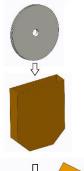
Packing


Notes

f) Drawing of large size carton in developed view

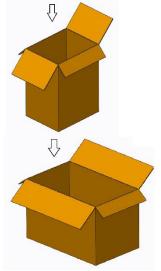
g) Picture of the label

h) Reel with the label



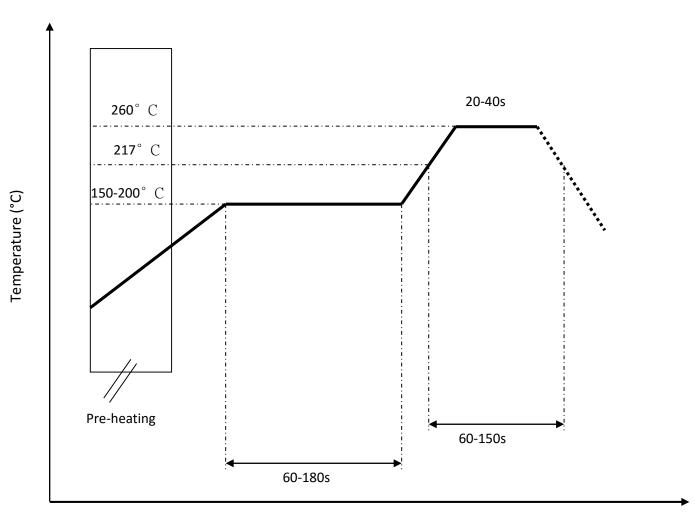
j) Middle size carton with the label


Tuning



5.1 Packing Process

1 reel includes max 5000 pieces chip antennas



1 middle size carton includes max 5pcs of small carons

1 large size carton includes max 2 pcs of middle size cartons

6 Notes

6.1 Typical Soldering Profile for Lead-free Process

Radiation Pattern

Layout

Tuning Packing

Notes

6.2 Operating and storage conditions:

Operating: Storage:

Maximum Input Power: 2W Storage Temperature -5C to 40 C

Operating Temperature: -40 C to 85 C Relative Humidity: 20% to 70%

Shelf Life: 1 year

6.3 Installation guide:

Request Unictron's application notes "General guidelines for the installation of Unictron's chip antennas" for further information at e-sales@unictron.com.

6.4 Reminders for users of Unictron's AA089 ceramic chip antennas

- 6.4.1. This chip antenna is made of ceramic materials which are relatively more rigid and brittle compared to printed circuit board materials. Bending of circuit board at the locations where chip antenna is mounted may cause the cracking of solder joints or antenna itself.
- 6.4.2. Punching/cutting of the break-off tab of PCB panel may cause severe bending of the circuit board which may result in cracking of solder joints or chip antenna itself. Therefore break-off tab shall be located away from the installation site of chip antenna.
- 6.4.3. Be cautious when ultrasonic welding process needs to be used near the locations where chip antennas are installed. Strong ultrasonic vibration may cause the cracking of chip antenna solder joints.

Electrical Characteristics

Radiation Pattern

Layout

Tuning

Packing

Notes

Presented data were measured on reference PCB (ground) as shown in this specification. When the antenna placement or size of the PCB is changed, antenna performance and values of matching components may differ from data shown here.

Information presented in this Reference Specification is believed to be correct as of the date of publishing. Unictron Technologies Corporation reserves the rights to change the Reference Specification without notice due to technical improvements, etc. Please consult with Unictron's engineering team about the latest information before using this product. Per request, we may provide advice and assistance in implementing this antenna to a customer's device by simulation or real measurement of the interested device in our testing facilities.

Unictron Technologies Corporation

No. 41 Shuei-Keng, Guan-Si

Hsinchu 30648

Taiwan (R.O.C.)

Tel: +886-3-547-5550

Email: e-sales@unictron.com

Web: www.unictron.com