Dual 1-of-4 Decoder/ Demultiplexer ## **High-Performance Silicon-Gate CMOS** The 74HC139A is identical in pinout to the LS139. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two independent 1–of–4 decoders, each of which decodes a two–bit Address to one–of–four active–low outputs. Active–low Selects are provided to facilitate the demultiplexing and cascading functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output, and utilizing the Select as a data input. - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS and TTL - Operating Voltage Range: 2.0 to 6.0 V - Low Input Current: 1.0 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No. 7A - Chip Complexity: 100 FETs or 25 Equivalent Gates ## LOGIC DIAGRAM ## **FUNCTION TABLE** | Inputs | | | | Out | puts | | |--------|----|----|----|-----|------|----| | Select | A1 | A0 | Y0 | Y1 | Y2 | Y3 | | Н | Х | Χ | Н | Н | Н | Н | | L | L | L | L | Н | Н | Н | | L | L | Н | Н | L | Н | Н | | L | Н | L | Н | Н | L | Н | | L | Н | Н | Н | Н | Н | L | X = don't care ### **PIN ASSIGNMENT** #### **ORDERING INFORMATION** | Device | Package | Shipping | | | | | |-------------|---------|-------------|--|--|--|--| | 74HC139N | DIP-16 | 2000 / Box | | | | | | 74HC139M/TR | SOP-16 | 2500 / Reel | | | | | | Symbol | Parameter | Value | Unit | |------------------|--|--------------------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | Vin | DC Input Voltage (Referenced to GND) | - 1.5 to V _{CC} + 1.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | - 0.5 to V _{CC} + 0.5 | V | | l _{in} | DC Input Current, per Pin | ± 20 | mA | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | ICC | DC Supply Current, V _{CC} and GND Pins | ± 50 | mA | | PD | Power Dissipation in Still Air, Plastic DIP† SOIC Package† | 750
500 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP or SOIC Package) | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. SOIC Package: - 7 mW/°C from 65° to 125°C For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). ## RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | | Max | Unit | |------------------------------------|--|--|-------------|--------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | | | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | | | Vcc | V | | TA | Operating Temperature, All Package Types | | - 55 | + 125 | °C | | t _r , t _f | Input Rise and Fall Time
(Figure 1) | $V_{CC} = 2.0 \text{ V}$
$V_{CC} = 4.5 \text{ V}$
$V_{CC} = 6.0 \text{ V}$ | 0
0
0 | 1000
500
400 | ns | ### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Guaranteed Limit | | | | |--------|---|---|-------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | VIH | Minimum High–Level Input
Voltage | $V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{Out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | V | | VIL | Maximum Low–Level Input
Voltage | $V_{\text{out}} = 0.1 \text{ V or } V_{\text{CC}} - 0.1 \text{ V}$
$ I_{\text{out}} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.5
1.35
1.8 | 0.5
1.35
1.8 | 0.5
1.35
1.8 | V | | VOH | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA} \ I_{\text{out}} \le 5.2 \text{ mA}$ | 4.5
6.0 | 3.98
5.48 | 3.84
5.34 | 3.70
5.20 | | | VOL | Maximum Low–Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{out}} \le 4.0 \text{ mA} $ $ I_{\text{out}} \le 5.2 \text{ mA}$ | 4.5
6.0 | 0.26
0.26 | 0.33
0.33 | 0.40
0.40 | | | lin | Maximum Input Leakage
Current | V _{in} = V _{CC} or GND | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μА | | lcc | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 6.0 | 4 | 40 | 160 | μΑ | NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). ^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. [†]Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C ## AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$) | | | | Guaranteed Limit | | | | |--|--|-------------------|------------------|-----------------|-----------------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Select to Output Y (Figures 1 and 3) | 2.0
4.5
6.0 | 115
23
20 | 145
29
25 | 175
35
30 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Input A to Output Y (Figures 2 and 3) | 2.0
4.5
6.0 | 115
23
20 | 145
29
25 | 175
35
30 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 1 and 3) | 2.0
4.5
6.0 | 75
15
13 | 95
19
16 | 110
22
19 | ns | | C _{in} | Maximum Input Capacitance | _ | 10 | 10 | 10 | pF | NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | | |----------|--|---|----|---| | C_{PD} | Power Dissipation Capacitance (Per Decoder)* | 55 | pF | l | ^{*} Used to determine the no–load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). ## **SWITCHING WAVEFORMS** Figure 1. Figure 2. – tphl ^{*}Includes all probe and jig capacitance Figure 3. Test Circuit Λ CC GND ## **PIN DESCRIPTIONS** ## **ADDRESS INPUTS** ## A0a, A1a, A0b, A1b (Pins 2, 3, 14, 13) Address inputs. These inputs, when the respective 1–of–4 decoder is enabled, determine which of its four active–low outputs is selected. ## CONTROL INPUTS Select_a, Select_b (Pins 1, 15) Active-low select inputs. For a low level on this input, the outputs for that particular decoder follow the Address inputs. A high level on this input forces all outputs to a high level. ## **OUTPUTS** $$Y0_a - Y3_a$$, $Y0_b - Y3_b$ (Pins 4 – 7, 12, 11, 10, 9) Active—low outputs. These outputs assume a low level when addressed and the appropriate Select input is active. These outputs remain high when not addressed or the appropriate Select input is inactive. # EXPANDED LOGIC DIAGRAM (1/2 OF DEVICE) ## Important statement: Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information. Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage. Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields. Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents. http://www.hgsemi.com.cn 5 2018 AUG