

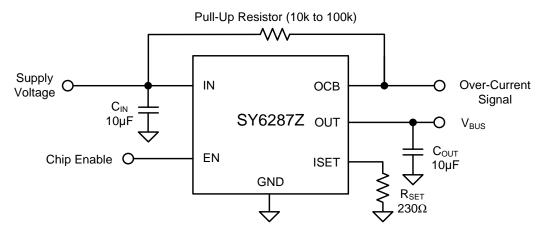
Low Loss Power Distribution Switch With Programmable Current limit

General Description

The SY6287Z is an ultra-low $R_{\rm DS(ON)}$ power distribution switch with current limit to protect the power source from over current and short circuit conditions. It incorporates over temperature protection and reverse blocking function.

Ordering Information

Ordering Number	Package Type	Note
SY6287ZDEC	DFN2×2-6	

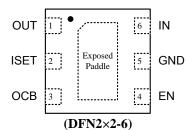

Features

- Input Voltage: 2.5V to 5.5V
- Extremely Low Power Path Resistance: $65m\Omega$ (Typ.)
- Adjustable Current Limit up to 2.0A
- Over Temperature Shutdown and Automatic Retry
- Reverse Blocking (No Body Diode)
- Fault Flag (OCB) Output for Over Current and Fault Conditions
- Built-in Soft-start
- Compact Package Minimizes the Board Space: DFN2×2-6
- RoHS Compliant and Halogen Free
- UL(CB) Certification NO. E491480

Applications

- USB 3.1 Application
- USB 3G Data Card
- USB Dongle
- Mini PCI Accessories
- USB Charger
- Public Place Multi-USB Charger
- PC Card Hot Swap Applications

Typical Application Circuit



Note: If $1\mu F$ input cap will lead to large Vin voltage spike, it is strongly recommended to add additional $10\mu F$ ceramic cap.

Figure 1. Schematic Diagram

Pinout (Top view)

Top Mark: nBxyz (device code: nB, x=year code, y=week code, z= lot number code)

Pin Name Pin Number		Pin Description				
IN	6	nput pin, decoupled with a 10μF capacitor to GND.				
GND 5, Exposed Paddle		Ground pin.				
OUT	1	Output pin, decoupled with a 10µF capacitor to GND.				
EN	4	ON/OFF control, active high. Do not leave it floating.				
ISET	2	Current limit programming pin. Connect a resistor R_{SET} from this pin to ground to program the current limit: I_{LIM} (A)=230/ R_{SET} (Ω).				
OCB	3	Open-drain fault flag.				

Block Diagram

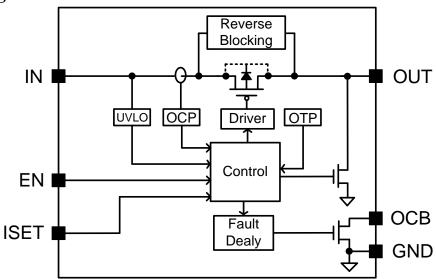


Figure 2. Block Diagram

Absolute Maximum Ratings (Note 1)	
IN, OUT	
ISET, OCB, EN	
Power Dissipation, P _D @ T _A = 25°C, DFN2×2-6	1.53W
Package Thermal Resistance (Note 2)	
DFN2×2-6, θ _{JA}	65.3°C/W
DFN2×2-6 _, θ _{JC}	16.2°C/W
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C
Recommended Operating Conditions (Note 3)	
IN, OUT	2.5V to 5.5V
ISET, OCB, EN	
Junction Temperature Range	
Ambient Temperature Range	

Electrical Characteristics

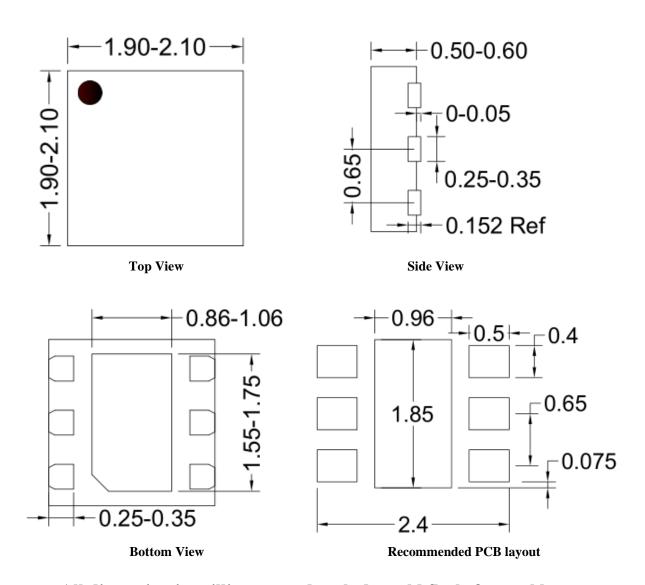
 $(V_{IN} = 5V, C_{OUT} = 10\mu F, T_A = 25$ °C, BOLD values indicate -40°C to 85°C, unless otherwise specified.)

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range		$V_{\rm IN}$		2.5		5.5	V
IN UVLO Threshold		$V_{IN,UVLO}$				2.45	V
IN UVLO Hysteresi	S	V _{IN,HYS}			0.1		V
Shutdown Input Current		I _{SHDN}	Open load, switch off		0.1	5	μA
			Output grounded, switch off		0.1	5	μΑ
Reverse Leakage Cu	ırrent		IN tied to GND, V _{OUT} =5V		0.1	5	μA
Reverse Blocking T	hreshold	V_{RBT}	V _{OUT} -V _{IN}		100		mV
Reverse Blocking Recovery Threshold		V _{RBT_REC}	V _{OUT} -V _{IN}		-30		mV
Quiescent Supply Current		I_Q	Open load, switch on		45	100	μA
FET R _{DS(ON)}		R _{DS(ON)}	V _{IN} =5V, I _{OUT} =0.5A		65	100	m Ω
Current Limit		I _{LIM}	V_{OUT} =4V, R_{SET} =460 Ω (Note5)	0.425	0.5	0.575	A
			V_{OUT} =4V, R_{SET} =153.3 Ω (Note5)	1.382	1.5	1.617	A
ENI/ENITE	Logic-low Voltage	V _{IL}				0.4	V
EN/ EN Threshold	Logic-high Voltage	V_{IH}		1.0			V
EN Input Cap		C _{EN}	(Note4)		1		pF
EN Leakage Current		I _{ENLK}				1	μΑ
Output Turn On Time		t _{ON}	R_L =10 Ω , C_L =1 μ F. Measure from EN ON to V_{OUT} reach V_{IN} ×90%		2	5	ms
Output Turn On Rise Time		t_R	R_L =10 Ω , C_L =1 μ F. Measure from V_{OUT} =10% of V_{IN} to 90% of V_{IN}	1	2	5	ms

Output Turn Off Time	t _{OFF}	R_L =10 Ω , C_L =1 μ F. Measure from EN OFF to V_{OUT} reach V_{IN} ×10%		22		μs
Output Turn Off Fall Time	t_{F}	R_L =10 Ω , C_L =1 μ F. Measure from V_{OUT} =90% of V_{IN} to 10% of V_{IN}		21		μs
OCB Low Resistance	R _{OCB}	$V_{IN}=5V$, $I_L=10\mu A$		9		Ω
OCB Low Resistance		$V_{IN}=3.3V, I_{L}=10\mu A$		12		Ω
OUT Shutdown Discharge Resistance	R _{DSG}	EN=0, V _{OUT} =0.1V		25		Ω
OCB Leakage Current	I _{LKG_OCB}	V _{OCB} =5V		0.01	1	μA
Thermal Shutdown Temperature	T_{SD}			150		°C
Thermal Shutdown Hysteresis	T _{HYS}			20		°C
Current Limit Response Time	t _{OC_RES}	I _{LOAD} =1.2I _{LIMIT} (Note 5)		25		μs
Short Circuit Response Time	toc	I _{LOAD} =1.5I _{LIMIT} (Note 5)		2		μs
Over Current Flag Response Time	tocb	I _{LOAD} =1.2I _{LIMIT} (Note 5)	4	8	12	μs
Reverse Blocking Response Time	t_{RBT}	Note4		800		ns

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

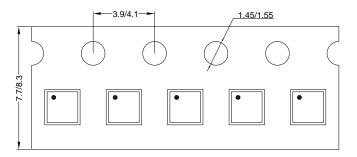
Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a Silergy's test board. The exposed paddle of DFN2×2-6 packages is the case position for θ_{JC} measurement.


Note 3: The device is not guaranteed to function outside its operating conditions.

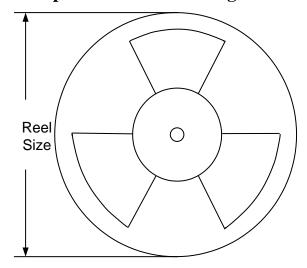
Note 4: Guaranteed by design but not production tested.

Note5: Current limit threshold is determined by I_{LMT}=230V/R_{SET}, where R_{SET} is in ohms.

DFN2×2-6 Package Outline


Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification


1. Taping Orientation

DFN2×2 taping orientation

Feeding direction ----

2. Carrier Tape & Reel Specification for Packages

Package	Tape width (mm)	Pocket	Reel size	Trailer	Leader length	Qty per
types		pitch(mm)	(Inch)	length(mm)	(mm)	reel
DFN2×2	8	4	7''	400	160	3000

3. Others: NA